Solveeit Logo

Question

Question: $\log_{\frac{x+6}{3}}\left(\log_2{\frac{x-1}{x+2}}\right)>0$...

logx+63(log2x1x+2)>0\log_{\frac{x+6}{3}}\left(\log_2{\frac{x-1}{x+2}}\right)>0

Answer

x \in (-6, -5) \cup (-3, -2)

Explanation

Solution

To solve the inequality logx+63(log2x1x+2)>0\log_{\frac{x+6}{3}}\left(\log_2{\frac{x-1}{x+2}}\right)>0, we first determine the domain and then consider two cases based on the base of the logarithm.

1. Domain Determination:

  • Argument of the inner logarithm: x1x+2>0\frac{x-1}{x+2} > 0. This implies x(,2)(1,)x \in (-\infty, -2) \cup (1, \infty).
  • Argument of the outer logarithm: log2x1x+2>0\log_2{\frac{x-1}{x+2}} > 0. Since the base 2>12 > 1, this means x1x+2>20=1\frac{x-1}{x+2} > 2^0 = 1. Solving x1x+2>1\frac{x-1}{x+2} > 1 gives 3x+2>0\frac{-3}{x+2} > 0, which implies x+2<0x+2 < 0, so x<2x < -2.
  • Base of the outer logarithm: x+63>0\frac{x+6}{3} > 0 and x+631\frac{x+6}{3} \neq 1. This means x+6>0    x>6x+6 > 0 \implies x > -6, and x+63    x3x+6 \neq 3 \implies x \neq -3.

Combining all conditions: x(,2)x \in (-\infty, -2), x>6x > -6, and x3x \neq -3. The overall domain is x(6,3)(3,2)x \in (-6, -3) \cup (-3, -2).

2. Solving the Inequality: Let B=x+63B = \frac{x+6}{3} and A=log2x1x+2A = \log_2{\frac{x-1}{x+2}}. The inequality is logB(A)>0\log_B(A) > 0.

  • Case 1: Base B>1B > 1 and Argument A>1A > 1.

    • B>1    x+63>1    x>3B > 1 \implies \frac{x+6}{3} > 1 \implies x > -3. Within the domain, this is x(3,2)x \in (-3, -2).
    • A>1    log2x1x+2>1    x1x+2>2A > 1 \implies \log_2{\frac{x-1}{x+2}} > 1 \implies \frac{x-1}{x+2} > 2. Solving x1x+2>2\frac{x-1}{x+2} > 2 gives x5x+2>0    x+5x+2<0\frac{-x-5}{x+2} > 0 \implies \frac{x+5}{x+2} < 0, which means x(5,2)x \in (-5, -2).
    • The intersection of x(3,2)x \in (-3, -2) and x(5,2)x \in (-5, -2) is x(3,2)x \in (-3, -2).
  • Case 2: 0<0 < Base B<1B < 1 and 0<0 < Argument A<1A < 1.

    • 0<B<1    0<x+63<1    6<x<30 < B < 1 \implies 0 < \frac{x+6}{3} < 1 \implies -6 < x < -3. Within the domain, this is x(6,3)x \in (-6, -3).
    • 0<A<10 < A < 1. We know A>0A > 0 implies x<2x < -2. We need to solve A<1A < 1: log2x1x+2<1    x1x+2<2\log_2{\frac{x-1}{x+2}} < 1 \implies \frac{x-1}{x+2} < 2. Solving x1x+2<2\frac{x-1}{x+2} < 2 gives x5x+2<0    x+5x+2>0\frac{-x-5}{x+2} < 0 \implies \frac{x+5}{x+2} > 0, which means x(,5)(2,)x \in (-\infty, -5) \cup (-2, \infty).
    • The intersection of x(6,3)x \in (-6, -3) and (x(,5)(2,)x \in (-\infty, -5) \cup (-2, \infty)) is x(6,5)x \in (-6, -5).

3. Combining Solutions: The total solution set is the union of the solutions from Case 1 and Case 2: x(3,2)(6,5)x \in (-3, -2) \cup (-6, -5). Therefore, the solution is x(6,5)(3,2)x \in (-6, -5) \cup (-3, -2).