Solveeit Logo

Question

Question: \[\log_{e}(x + 1) - \log_{e}(x - 1) =\]...

loge(x+1)loge(x1)=\log_{e}(x + 1) - \log_{e}(x - 1) =

A

2[x+x33+x55+......]2\left\lbrack x + \frac{x^{3}}{3} + \frac{x^{5}}{5} + ......\infty \right\rbrack

B

[x+x33+x55+......]\left\lbrack x + \frac{x^{3}}{3} + \frac{x^{5}}{5} + ......\infty \right\rbrack

C

2[1x+13x3+15x5+...]2\left\lbrack \frac{1}{x} + \frac{1}{3x^{3}} + \frac{1}{5x^{5}} + ...\infty \right\rbrack

D

[1x+13x3+15x5+...]\left\lbrack \frac{1}{x} + \frac{1}{3x^{3}} + \frac{1}{5x^{5}} + ...\infty \right\rbrack

Answer

2[1x+13x3+15x5+...]2\left\lbrack \frac{1}{x} + \frac{1}{3x^{3}} + \frac{1}{5x^{5}} + ...\infty \right\rbrack

Explanation

Solution

1loge(1y)\frac{1}{\log_{e}(1 - y)}

loge11y\log_{e}\frac{1}{1 - y}.