Solveeit Logo

Question

Question: \[\log_{e}\frac{4}{5} + \frac{1}{4} - \frac{1}{2}\left( \frac{1}{4} \right)^{2} + \frac{1}{3}\left( ...

loge45+1412(14)2+13(14)3+.....\log_{e}\frac{4}{5} + \frac{1}{4} - \frac{1}{2}\left( \frac{1}{4} \right)^{2} + \frac{1}{3}\left( \frac{1}{4} \right)^{3} + .....

A

2loge452\log_{e}\frac{4}{5}

B

loge54\log_{e}\frac{5}{4}

C

1

D

0

Answer

0

Explanation

Solution

1+abx1!+(abx)22!+(abx)33!+....=1 + \frac{a - bx}{1!} + \frac{(a - bx)^{2}}{2!} + \frac{(a - bx)^{3}}{3!} + ....\infty =

= eabxe^{a - bx}.