Solveeit Logo

Question

Question: \(\log_{e}2 + \log_{e}\left( 1 + \frac{1}{2} \right) + \log_{e}\left( 1 + \frac{1}{3} \right) + .......

loge2+loge(1+12)+loge(1+13)+....+loge(1+1n1)\log_{e}2 + \log_{e}\left( 1 + \frac{1}{2} \right) + \log_{e}\left( 1 + \frac{1}{3} \right) + .... + \log_{e}\left( 1 + \frac{1}{n - 1} \right) is

equal to.

A

loge1\log_{e}1

B

logen\log_{e}n

C

loge(1+n)\log_{e}(1 + n)

D

loge(1n)\log_{e}(1 - n)

Answer

logen\log_{e}n

Explanation

Solution

The given series reduces to

e414e2\frac{e^{4} - 1}{4e^{2}}

e4+14e2\frac{e^{4} + 1}{4e^{2}}....

12.21!+22.32!+32.43!+.....=6e\frac{1^{2}.2}{1!} + \frac{2^{2}.3}{2!} + \frac{3^{2}.4}{3!} + .....\infty = 6e.