Solveeit Logo

Question

Question: \[\log_{6}16 = \frac{\log 16}{\log 6} = \frac{4\log 2}{\log 2 + \log 3}\]...

log616=log16log6=4log2log2+log3\log_{6}16 = \frac{\log 16}{\log 6} = \frac{4\log 2}{\log 2 + \log 3}

A

=4log2log2+2alog23a=4(3a)3a+2a=4.3a3+a= \frac{4\log 2}{\log 2 + \frac{2a\log 2}{3 - a}} = \frac{4(3 - a)}{3 - a + 2a} = 4.\frac{3 - a}{3 + a}

B

log16x=yy2y+log16k=0\log_{16}x = y \Rightarrow y^{2} - y + \log_{16}k = 0

C

\therefore

D

(1)24.1.log16k=01=log16k4( - 1)^{2} - 4.1.\log_{16}k = 0 \Rightarrow 1 = \log_{16}k^{4}

Answer

(1)24.1.log16k=01=log16k4( - 1)^{2} - 4.1.\log_{16}k = 0 \Rightarrow 1 = \log_{16}k^{4}

Explanation

Solution

x=yx = y

y=zy = z.