Solveeit Logo

Question

Question: Solve the following inequality: $\log_{4}(2x^{2}+3x+1) \le \log_{2}(2x+2)$...

Solve the following inequality:

log4(2x2+3x+1)log2(2x+2)\log_{4}(2x^{2}+3x+1) \le \log_{2}(2x+2)

Answer

The solution set for the inequality is x(12,)x \in (-\frac{1}{2}, \infty).

Explanation

Solution

  1. Determine the domain by ensuring the arguments of the logarithms are positive: 2x2+3x+1>02x^2+3x+1 > 0 and 2x+2>02x+2 > 0. This yields the domain x>1/2x > -1/2.

  2. Rewrite the inequality using a common base (base 2): 12log2(2x2+3x+1)log2(2x+2)\frac{1}{2}\log_2(2x^2+3x+1) \le \log_2(2x+2).

  3. Simplify the inequality using logarithm properties: log2(2x2+3x+1)log2((2x+2)2)\log_2(2x^2+3x+1) \le \log_2((2x+2)^2).

  4. Remove the logarithms (since the base is > 1, the inequality direction is preserved): 2x2+3x+1(2x+2)22x^2+3x+1 \le (2x+2)^2.

  5. Solve the resulting quadratic inequality: 2x2+3x+14x2+8x+4    2x2+5x+302x^2+3x+1 \le 4x^2+8x+4 \implies 2x^2+5x+3 \ge 0. Factoring gives (2x+3)(x+1)0(2x+3)(x+1) \ge 0, which is true for x3/2x \le -3/2 or x1x \ge -1.

  6. Find the intersection of the domain (x>1/2x > -1/2) and the solution to the quadratic inequality (x3/2x \le -3/2 or x1x \ge -1). The intersection is x>1/2x > -1/2.

Therefore, the solution set for the inequality is x(12,)x \in (-\frac{1}{2}, \infty).