Solveeit Logo

Question

Question: \(\log_2(x^2-5x+6)>1\)...

log2(x25x+6)>1\log_2(x^2-5x+6)>1

Answer

x(,1)(4,)x \in (-\infty, 1) \cup (4, \infty)

Explanation

Solution

  1. Domain: x25x+6>0    (x2)(x3)>0    x(,2)(3,)x^2-5x+6 > 0 \implies (x-2)(x-3) > 0 \implies x \in (-\infty, 2) \cup (3, \infty).
  2. Inequality: x25x+6>21    x25x+4>0    (x1)(x4)>0    x(,1)(4,)x^2-5x+6 > 2^1 \implies x^2-5x+4 > 0 \implies (x-1)(x-4) > 0 \implies x \in (-\infty, 1) \cup (4, \infty).
  3. Intersection: The solution is the intersection of the domain and the inequality's solution, which is x(,1)(4,)x \in (-\infty, 1) \cup (4, \infty).