Solveeit Logo

Question

Question: $log_2log_3e^{ln5^{log_57^{log_710^{log_{10}(8x-3)}}}}=13.is$...

log2log3eln5log57log710log10(8x3)=13.islog_2log_3e^{ln5^{log_57^{log_710^{log_{10}(8x-3)}}}}=13.is

Answer

x = \frac{3^{8192}+3}{8}

Explanation

Solution

Step-by-Step Solution

  1. Simplify the Expression:

    The given equation is

    log2(log3(eln(5log5(7log7(10log10(8x3))))))=13.\log_2\left(\log_3\Big(e^{\ln\Big(5^{\log_5\Big(7^{\log_7\Big(10^{\log_{10}(8x-3)}\Big)}\Big)}\Big)}\Big)\right) = 13.
  2. Remove the Exponential and Logarithm Pair:

    Notice that elnA=Ae^{\ln A} = A. Thus,

    eln(5log5(7log7(10log10(8x3))))=5log5(7log7(10log10(8x3))).e^{\ln\left(5^{\log_5\left(7^{\log_7\left(10^{\log_{10}(8x-3)}\right)}\right)}\right)} = 5^{\log_5\left(7^{\log_7\left(10^{\log_{10}(8x-3)}\right)}\right)}.
  3. Apply the Inverse Property of Logarithms:

    Using the property aloga(B)=Ba^{\log_a(B)} = B:

    5log5(7log7(10log10(8x3)))=7log7(10log10(8x3))=10log10(8x3)=8x3.5^{\log_5\left(7^{\log_7\left(10^{\log_{10}(8x-3)}\right)}\right)} = 7^{\log_7\left(10^{\log_{10}(8x-3)}\right)} = 10^{\log_{10}(8x-3)} = 8x-3.
  4. Rewrite the Equation:

    The equation now reduces to

    log2(log3(8x3))=13.\log_2\left(\log_3(8x-3)\right) = 13.
  5. Solve for log3(8x3)\log_3(8x-3):

    Exponentiating both sides with base 2 gives:

    log3(8x3)=213=8192.\log_3(8x-3) = 2^{13} = 8192.
  6. Solve for 8x38x-3:

    Exponentiating both sides with base 3:

    8x3=38192.8x-3 = 3^{8192}.
  7. Solve for xx:

    8x=38192+3x=38192+38.8x = 3^{8192} + 3 \quad \Longrightarrow \quad x = \frac{3^{8192} + 3}{8}.

Core Explanation:
Successively simplify the expression using the properties elnA=Ae^{\ln A}=A and alogaB=Ba^{\log_a B}=B. Reduce the original logarithmic equation to log2(log3(8x3))=13\log_2(\log_3(8x-3))=13, and then solve step-by-step using exponentiation.