Question
Question: $log_2log_3e^{ln5^{log_57^{log_710^{log_{10}(8x-3)}}}}=13.is$...
log2log3eln5log57log710log10(8x−3)=13.is

Answer
x = \frac{3^{8192}+3}{8}
Explanation
Solution
Step-by-Step Solution
-
Simplify the Expression:
The given equation is
log2log3(eln(5log5(7log7(10log10(8x−3)))))=13. -
Remove the Exponential and Logarithm Pair:
Notice that elnA=A. Thus,
eln5log5(7log7(10log10(8x−3)))=5log5(7log7(10log10(8x−3))). -
Apply the Inverse Property of Logarithms:
Using the property aloga(B)=B:
5log5(7log7(10log10(8x−3)))=7log7(10log10(8x−3))=10log10(8x−3)=8x−3. -
Rewrite the Equation:
The equation now reduces to
log2(log3(8x−3))=13. -
Solve for log3(8x−3):
Exponentiating both sides with base 2 gives:
log3(8x−3)=213=8192. -
Solve for 8x−3:
Exponentiating both sides with base 3:
8x−3=38192. -
Solve for x:
8x=38192+3⟹x=838192+3.
Core Explanation:
Successively simplify the expression using the properties elnA=A and alogaB=B. Reduce the original logarithmic equation to log2(log3(8x−3))=13, and then solve step-by-step using exponentiation.