Solveeit Logo

Question

Question: $\log_{10}(\log_23) + \log_{10}(\log_34) + \log_{10}(\log_45) + ....... + \log_{10}(\log_{1023}1024)...

log10(log23)+log10(log34)+log10(log45)+.......+log10(log10231024)\log_{10}(\log_23) + \log_{10}(\log_34) + \log_{10}(\log_45) + ....... + \log_{10}(\log_{1023}1024) simplifies to

A

a composite

B

a prime number

C

rational which is not an integer

D

an integer

Answer

(D)

Explanation

Solution

The given expression is:

S=log10(log23)+log10(log34)+log10(log45)+.......+log10(log10231024)S = \log_{10}(\log_23) + \log_{10}(\log_34) + \log_{10}(\log_45) + ....... + \log_{10}(\log_{1023}1024)

This is a sum of logarithms with base 10. Using the property logbx+logby=logb(xy)\log_b x + \log_b y = \log_b (xy), we can combine the terms into a single logarithm of a product:

S=log10[(log23)×(log34)×(log45)×.......×(log10231024)]S = \log_{10} [ (\log_23) \times (\log_34) \times (\log_45) \times ....... \times (\log_{1023}1024) ]

Let's evaluate the product inside the logarithm. The product is:

P=(log23)×(log34)×(log45)×.......×(log10231024)P = (\log_23) \times (\log_34) \times (\log_45) \times ....... \times (\log_{1023}1024)

We can use the change of base formula for logarithms: logba=logcalogcb\log_b a = \frac{\log_c a}{\log_c b}. Let's use base 10 for the change of base, as it matches the outer logarithm's base:

log23=log103log102\log_23 = \frac{\log_{10}3}{\log_{10}2}

log34=log104log103\log_34 = \frac{\log_{10}4}{\log_{10}3}

log45=log105log104\log_45 = \frac{\log_{10}5}{\log_{10}4}

...

log10231024=log101024log101023\log_{1023}1024 = \frac{\log_{10}1024}{\log_{10}1023}

Substitute these expressions back into the product PP:

P=(log103log102)×(log104log103)×(log105log104)×.......×(log101024log101023)P = \left(\frac{\log_{10}3}{\log_{10}2}\right) \times \left(\frac{\log_{10}4}{\log_{10}3}\right) \times \left(\frac{\log_{10}5}{\log_{10}4}\right) \times ....... \times \left(\frac{\log_{10}1024}{\log_{10}1023}\right)

This is a telescoping product. The numerator of each term cancels with the denominator of the next term:

P=log103log102×log104log103×log105log104×.......×log101024log101023P = \frac{\cancel{\log_{10}3}}{\log_{10}2} \times \frac{\cancel{\log_{10}4}}{\cancel{\log_{10}3}} \times \frac{\cancel{\log_{10}5}}{\cancel{\log_{10}4}} \times ....... \times \frac{\log_{10}1024}{\cancel{\log_{10}1023}}

The product simplifies to:

P=log101024log102P = \frac{\log_{10}1024}{\log_{10}2}

Using the change of base formula in reverse (logcalogcb=logba\frac{\log_c a}{\log_c b} = \log_b a), we get:

P=log21024P = \log_2 1024

Now, we need to evaluate log21024\log_2 1024. We need to find the power to which 2 must be raised to get 1024.

210=10242^{10} = 1024

So, log21024=10\log_2 1024 = 10.

The value of the product PP is 10.

Now, substitute this value back into the expression for SS:

S=log10[P]=log10[10]S = \log_{10} [ P ] = \log_{10} [ 10 ]

The logarithm of a number to the same base is 1:

log1010=1\log_{10} 10 = 1

The simplified value of the expression is 1.

Therefore, the answer is an integer.