Solveeit Logo

Question

Question: \[\log(1 + e^{x}) - x + e^{- x} + c\]...

log(1+ex)x+ex+c\log(1 + e^{x}) - x + e^{- x} + c

A

log(1+ex)+x+ex+c\log(1 + e^{x}) + x + e^{- x} + c

B

11e2x6mudx=\int_{}^{}{\frac{1}{\sqrt{1 - e^{2x}}}\mspace{6mu} dx =}

C

xlog[1+1e2x]+cx - \log\lbrack 1 + \sqrt{1 - e^{2x}}\rbrack + c

D

x+log[1+1e2x]+cx + \log\lbrack 1 + \sqrt{1 - e^{2x}}\rbrack + c

Answer

11e2x6mudx=\int_{}^{}{\frac{1}{\sqrt{1 - e^{2x}}}\mspace{6mu} dx =}

Explanation

Solution

Put dxsinx+3cosx=\int_{}^{}\frac{dx}{\sin x + \sqrt{3}\cos x} =

then it reduces to

logtan(x2+π2)+c{logtan}\left( \frac{x}{2} + \frac{\pi}{2} \right) + c