Solveeit Logo

Question

Question: \[\log(1 + \cot x) + c\]...

log(1+cotx)+c\log(1 + \cot x) + c

A

log(1+cotx)+c- \log(1 + \cot x) + c

B

12(1+cotx)2+c\frac{1}{2(1 + \cot x)^{2}} + c

C

1xsinx6mudx=\int_{}^{}\frac{1}{\sqrt{x}}\sin\sqrt{x}\mspace{6mu} dx =

D

12cosx+c- \frac{1}{2}\cos\sqrt{x} + c

Answer

1xsinx6mudx=\int_{}^{}\frac{1}{\sqrt{x}}\sin\sqrt{x}\mspace{6mu} dx =

Explanation

Solution

logcotx+c{logcot}x + c

Put 11+sinxdx=\int_{}^{}{\frac{1}{\sqrt{1 + \sin x}}dx} = then it reduces to

22logtan(π8+x4)+c2\sqrt{2}{logtan}\left( \frac{\pi}{8} + \frac{x}{4} \right) + c.