Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

log(sin1)×log(sin2)×log(sin3)log(sin179)log (\sin \,1^\circ ) \times \log(\sin\, 2^\circ) \times \log(\sin \,3^\circ)\dots log (sin \,179^{\circ})

A

is positive

B

is negative

C

lies between 1 and 180

D

is zero

Answer

is zero

Explanation

Solution

log(sin1)log(sin2)log(sin3)log(sin179)\log \left(\sin 1^{\circ}\right) \cdot \log \left(\sin 2^{\circ}\right) \cdot \log \left(\sin 3^{\circ}\right) \ldots \log \left(\sin 179^{\circ}\right)
=logsin1logsin2logsin90logsin179=\log \sin 1^{\circ} \cdot \log \sin 2^{\circ} \ldots \log \sin 90^{\circ} \ldots \log \sin 179^{\circ}
=logsin1logsin2log(1)logsin179(sin90=1)= \log \sin 1^{\circ} \cdot \log \sin 2^{\circ} \ldots \log (1) \ldots \log \sin 179^{\circ} \,\,\,\,\,\left(\because \sin 90^{\circ}=1\right)
=logsin1logsin20logsin179= \log \sin 1^{\circ} \cdot \log \sin 2 \ldots 0 \ldots \log \sin 179^{\circ}
(log1=0)(\because \,log \,1=0)
=0= 0