Solveeit Logo

Question

Question: \[{\log _3}2,{\log _6}2,{\log _{12}}2\] are in A) A.P B) G.P C) H.P D) None...

log32,log62,log122{\log _3}2,{\log _6}2,{\log _{12}}2 are in
A) A.P
B) G.P
C) H.P
D) None

Explanation

Solution

The logarithmic function is the inverse function of the exponential function given by the formulalogba=cbc=loga{\log _b}a = c \Leftrightarrow {b^c} = \log a, where b is the base of the logarithmic function. The logarithm is the mathematical operation that tells how many times a number or base is multiplied by itself to reach another number. There are five basic properties of the logarithm, namely Product rule, Quotient rule, Change of base rule, power rule, and equality rule.
A series is a description of the operation of adding infinitely many quantities, one after the other, to a given starting quantity.
To solve this question, first, use the change of base rule of the logarithm to write the logarithm in ab\dfrac{a}{b} form and then study the nature of the series by finding their common difference or the common ratio.

Complete step by step answer:
Use the change the base property of logarithm given as logax=logbxlogba{\log _a}x = \dfrac{{{{\log }_b}x}}{{{{\log }_b}a}} hence the terms can write as

log32,log62,log122 log2log3,log2log6,log2log12 log2log3,log2log(2×3),log2log(22×3)(i) {\log _3}2,{\log _6}2,{\log _{12}}2 \\\ \Rightarrow\dfrac{{\log 2}}{{\log 3}},\dfrac{{\log 2}}{{\log 6}},\dfrac{{\log 2}}{{\log 12}} \\\ \Rightarrow\dfrac{{\log 2}}{{\log 3}},\dfrac{{\log 2}}{{\log \left( {2 \times 3} \right)}},\dfrac{{\log 2}}{{\log \left( {{2^2} \times 3} \right)}} - - - - (i) \\\

Since the Product rule of logarithm says loga(xy)=logax+logay{\log _a}\left( {xy} \right) = {\log _a}x + {\log _a}y; hence the denominators of the equation (i) can be written as:
log2log3,log2log2+log3,log2log22+log3(ii)\dfrac{{\log 2}}{{\log 3}},\dfrac{{\log 2}}{{\log 2 + \log 3}},\dfrac{{\log 2}}{{\log {2^2} + \log 3}} - - - - (ii)
Now use the power rule of the logarithm logaxp=plogax{\log _a}{x^p} = p{\log _a}x to resolve log22=2log2\log {2^2} = 2\log 2, equation (ii) can be re-written as:
log2log3,log2log2+log3,log22log2+log3(iii)\dfrac{{\log 2}}{{\log 3}},\dfrac{{\log 2}}{{\log 2 + \log 3}},\dfrac{{\log 2}}{{2\log 2 + \log 3}} - - - - (iii)
Now divide both the numerators and the denominators of the equation (iii) with log3\log 3; hence equation (iii) is written as:

log2log3,log2log2+log3,log22log2+log3 (log2log3)(log3log3),(log2log3)(log2+log3log3),(log2log3)(2log2+log3log3) log2log3,(log2log3)(log2log3+1),(log2log3)(2log2log3+1)(iv) \Rightarrow\dfrac{{\log 2}}{{\log 3}},\dfrac{{\log 2}}{{\log 2 + \log 3}},\dfrac{{\log 2}}{{2\log 2 + \log 3}} \\\ \Rightarrow\dfrac{{\left( {\dfrac{{\log 2}}{{\log 3}}} \right)}}{{\left( {\dfrac{{\log 3}}{{\log 3}}} \right)}},\dfrac{{\left( {\dfrac{{\log 2}}{{\log 3}}} \right)}}{{\left( {\dfrac{{\log 2 + \log 3}}{{\log 3}}} \right)}},\dfrac{{\left( {\dfrac{{\log 2}}{{\log 3}}} \right)}}{{\left( {\dfrac{{2\log 2 + \log 3}}{{\log 3}}} \right)}} \\\ \Rightarrow\dfrac{{\log 2}}{{\log 3}},\dfrac{{\left( {\dfrac{{\log 2}}{{\log 3}}} \right)}}{{\left( {\dfrac{{\log 2}}{{\log 3}} + 1} \right)}},\dfrac{{\left( {\dfrac{{\log 2}}{{\log 3}}} \right)}}{{\left( {2\dfrac{{\log 2}}{{\log 3}} + 1} \right)}} - - - - (iv) \\\

Let log2log3=a\dfrac{{\log 2}}{{\log 3}} = a, equation (iv) can be written as:
a,aa+1,a2a+1(v)a,\dfrac{a}{{a + 1}},\dfrac{a}{{2a + 1}} - - - - (v)
So, the sequence of the given series log32,log62,log122{\log _3}2,{\log _6}2,{\log _{12}}2 is a,aa+1,a2a+1a,\dfrac{a}{{a + 1}},\dfrac{a}{{2a + 1}}
Now check by the options for the nature of the series
i) To check for the A.P series, find the common difference of the sequence

d1=aa+1a;d2=a2a+1aa+1 d1=aa2aa+1;d2=a(a+1)a(2a+1)(2a+1)×(a+1)=a2+a2a2a2a2+3a+1 d1=a2a+1;d2=a22a2+3a+1 \Rightarrow{d_1} = \dfrac{a}{{a + 1}} - a;{d_2} = \dfrac{a}{{2a + 1}} - \dfrac{a}{{a + 1}} \\\ \Rightarrow{d_1} = \dfrac{{a - {a^2} - a}}{{a + 1}};{d_2} = \dfrac{{a\left( {a + 1} \right) - a\left( {2a + 1} \right)}}{{\left( {2a + 1} \right) \times \left( {a + 1} \right)}} = \dfrac{{{a^2} + a - 2{a^2} - a}}{{2{a^2} + 3a + 1}} \\\ \Rightarrow{d_1} = \dfrac{{ - {a^2}}}{{a + 1}};{d_2} = \dfrac{{ - {a^2}}}{{2{a^2} + 3a + 1}} \\\

The common differences are not equal d1d2{d_1} \ne {d_2} hence it can be concluded that the series is not in A.P
ii) To check for the G.P series, find the common ratio of the sequence

r1=(aa+1)a;r2=(a2a+1)(aa+1) =1a+1;r2=2a+1a+1 \Rightarrow{r_1} = \dfrac{{\left( {\dfrac{a}{{a + 1}}} \right)}}{a};{r_2} = \dfrac{{\left( {\dfrac{a}{{2a + 1}}} \right)}}{{\left( {\dfrac{a}{{a + 1}}} \right)}} \\\ \Rightarrow = \dfrac{1}{{a + 1}};{r_2} = \dfrac{{2a + 1}}{{a + 1}} \\\

The common ratios are not equal r1r2{r_1} \ne {r_2} hence the series is not in G.P
iii) To check for the H.P series, find the reciprocal of terms a,aa+1,a2a+1a,\dfrac{a}{{a + 1}},\dfrac{a}{{2a + 1}}, which is
1a,a+1a,2a+1a\dfrac{1}{a},\dfrac{{a + 1}}{a},\dfrac{{2a + 1}}{a}
Now find the common difference of the sequence

d1=(a+1a)(1a);d2=(2a+1a)(a+1a) d1=a+11a;d2=2a+1a1a d1=aa;d2=aa d1=1;d2=1 \Rightarrow{d_1} = \left( {\dfrac{{a + 1}}{a}} \right) - \left( {\dfrac{1}{a}} \right);{d_2} = \left( {\dfrac{{2a + 1}}{a}} \right) - \left( {\dfrac{{a + 1}}{a}} \right) \\\ \Rightarrow{d_1} = \dfrac{{a + 1 - 1}}{a};{d_2} = \dfrac{{2a + 1 - a - 1}}{a} \\\ \Rightarrow{d_1} = \dfrac{a}{a};{d_2} = \dfrac{a}{a} \\\ \Rightarrow{d_1} = 1;{d_2} = 1 \\\

Since common differences are equal d1=d2{d_1} = {d_2} hence, it can be concluded that the series is in H.P

Thus option (C) is correct.

Note: To determine the nature of the series, always try to find the common difference or common ratios of the sequence series. Students often make mistakes in computing the common difference and the ratios of the consequent terms, which results in the wrong answer.