Solveeit Logo

Question

Mathematics Question on Exponential and Logarithmic Functions

log32,log62,log122\log_3\,2, \log_6\,2, \log_{12}\,2 are in

A

A.PA.P

B

G.PG.P

C

H.PH.P

D

None of the options

Answer

H.PH.P

Explanation

Solution

We have, log32,log62,log122\log _{3} 2, \log _{6} 2, \log _{12} 2 Let a=log32=log2log3[logmn=lognlogm]a =\log _{3} 2=\frac{\log 2}{\log 3} \left[\because \log _{m} n=\frac{\log n}{\log m}\right] b=log62=log2log6b =\log _{6} 2=\frac{\log 2}{\log 6} and c=log122=log2log12c=\log _{12} 2=\frac{\log 2}{\log 12} Now, 1a+1c=log3log2+log12log2\frac{1}{a}+\frac{1}{c}=\frac{\log 3}{\log 2}+\frac{\log 12}{\log 2} =log3+log12log2=log36log2=\frac{\log 3+\log 12}{\log 2}=\frac{\log 36}{\log 2} [log(mn)=logm+logn][\because \log (m n)=\log m+\log n] =log62log2=2log6log2=2b=\frac{\log 6^{2}}{\log 2}=\frac{2 \log 6}{\log 2}=\frac{2}{b} Hence, a, b and c are in HP