Solveeit Logo

Question

Question: Locus of the points from which perpendicular tangent can be drawn to the circle \(x ^ { 2 } + y ^ {...

Locus of the points from which perpendicular tangent can be drawn to the circle x2+y2=a2x ^ { 2 } + y ^ { 2 } = a ^ { 2 } , is.

A

A circle passing through origin

B

A circle of radius 2a

C

A concentric circle of radius a2a \sqrt { 2 }

D

None of these

Answer

A concentric circle of radius a2a \sqrt { 2 }

Explanation

Solution

Required locus is SS1=T2S S _ { 1 } = T ^ { 2 }

(x2+y2a2)(h2+k2a2)=(hx+kya2)2\left( x ^ { 2 } + y ^ { 2 } - a ^ { 2 } \right) \left( h ^ { 2 } + k ^ { 2 } - a ^ { 2 } \right) = \left( h x + k y - a ^ { 2 } \right) ^ { 2 }

But as given, coefficient of x2+x ^ { 2 } + coefficient of y2=0y ^ { 2 } = 0

\Rightarrow h2+k2=2a2h ^ { 2 } + k ^ { 2 } = 2 a ^ { 2 } .

Hence locus of the point is the circle with centre (0, 0) and radius a2a \sqrt { 2 }.