Solveeit Logo

Question

Question: Locus of the middle points of the chords of the hyperbola \(\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}...

Locus of the middle points of the chords of the hyperbola x2a2y2b2\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} = 1 which passes through a fixed point (a, b) is hyperbola whose centre is –

A

(a, b)

B

(2a, 2b)

C

(a/2, b/2)

D

None these

Answer

(a/2, b/2)

Explanation

Solution

T = S1 at mid point (h, k) hxa2kyb2\frac{hx}{a^{2}} - \frac{ky}{b^{2}} = h2a2\frac{h^{2}}{a^{2}}k2b2\frac{k^{2}}{b^{2}}

pass (a, b) point

\ hαa2\frac{h\alpha}{a^{2}}kyb2\frac{ky}{b^{2}} = h2a2\frac{h^{2}}{a^{2}}k2b2\frac{k^{2}}{b^{2}}

\ locus is x2αxa2\frac{x^{2} - \alpha x}{a^{2}}y2βyb2\frac{y^{2} - \beta y}{b^{2}} = 0

Ž (xα/2)2a2\frac{(x - \alpha/2)^{2}}{a^{2}}(yβ/2)2b2\frac{(y–\beta/2)^{2}}{b^{2}} = 14\frac{1}{4} (α2a2β2b2)\left( \frac{\alpha^{2}}{a^{2}} - \frac{\beta^{2}}{b^{2}} \right)

= k2 (let)

is a hyperbola.

Where centre is (a/2, b/2).