Solveeit Logo

Question

Question: Locus of the mid points of the chord of ellipse \(\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1\), s...

Locus of the mid points of the chord of ellipse x2a2+y2b2=1\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1, so that chord is always touching the circle x2+y2=c2,x^{2} + y^{2} = c^{2},

(c < a, c < b) is

A

(b2x2+a2y2)2=c2(b4x2+a4y2)\left( b^{2}x^{2} + a^{2}y^{2} \right)^{2} = c^{2}\left( b^{4}x^{2} + a^{4}y^{2} \right)

B

(a2x2+b2y2)2=c2(a4x2+b4y2)\left( a^{2}x^{2} + b^{2}y^{2} \right)^{2} = c^{2}\left( a^{4}x^{2} + b^{4}y^{2} \right)

C

(a2x2+b2y2)2=c2(a4x2+b4y2)\left( a^{2}x^{2} + b^{2}y^{2} \right)^{2} = c^{2}\left( a^{4}x^{2} + b^{4}y^{2} \right)

D

None of these

Answer

(b2x2+a2y2)2=c2(b4x2+a4y2)\left( b^{2}x^{2} + a^{2}y^{2} \right)^{2} = c^{2}\left( b^{4}x^{2} + a^{4}y^{2} \right)

Explanation

Solution

Let mid point of the chord be (h, k), then equation of the chord is hxa2+ky2b21=h2a2+k2b21\frac{hx}{a^{2}} + \frac{ky^{2}}{b^{2}} - 1 = \frac{h^{2}}{a^{2}} + \frac{k^{2}}{b^{2}} - 1⇒ y =

b2a2.hkx+(h2a2+k2b2)b2k\frac{b^{2}}{a^{2}}.\frac{h}{k}x + \left( \frac{h^{2}}{a^{2}} + \frac{k^{2}}{b^{2}} \right)\frac{b^{2}}{k} ---- 1

since line (1) is touching the circle x2 +y2 = c2 ---- 2

(h2a2+k2b2)2b4k2=c2(1+b4a4h2k2)\left( \frac{h^{2}}{a^{2}} + \frac{k^{2}}{b^{2}} \right)^{2}\frac{b^{4}}{k^{2}} = c^{2}\left( 1 + \frac{b^{4}}{a^{4}}\frac{h^{2}}{k^{2}} \right)

∴ Required locus is (b2x2+a2y2)2=c2(b4x2+a4y2)\left( b^{2}x^{2} + a^{2}y^{2} \right)^{2} = c^{2}\left( b^{4}x^{2} + a^{4}y^{2} \right).