Solveeit Logo

Question

Question: Locus of the foot of the perpendicular drawn from the centre upon any tangent to the ellipse \(\frac...

Locus of the foot of the perpendicular drawn from the centre upon any tangent to the ellipse x2a2\frac{x^{2}}{a^{2}}+ y2b2\frac{y^{2}}{b^{2}}= 1, is –

A

(x2 + y2)2 = b2 x2 + a2y2

B

(x2 + y2)2 = b2x2 – a2y2

C

(x2 + y2)2 = a2x2 –b2y2

D

(x2 + y2)2 = a2x2 + b2y2

Answer

(x2 + y2)2 = a2x2 + b2y2

Explanation

Solution

Centre ŗ (0, 0)

any tangent y = mx + a2m2+b2\sqrt{a^{2}m^{2} + b^{2}}

Ž mx – y + a2m2+b2\sqrt{a^{2}m^{2} + b^{2}} = 0

Let foot is (h, k) so mh – k + a2m2+b2\sqrt{a^{2}m^{2} + b^{2}} = 0

and m = – hk\frac{h}{k}

So locus – h2k\frac{h^{2}}{k}– k + a2h2k2+b2\sqrt{a^{2}\frac{h^{2}}{k^{2}} + b^{2}}= 0

Ž (h2 + k2)2 = a2h2 + b2k2

or (x2 + y2)2 = a2x2 + b2y2