Question
Question: Locus of the foot of the perpendicular drawn from the centre upon any tangent to the ellipse \(\frac...
Locus of the foot of the perpendicular drawn from the centre upon any tangent to the ellipse a2x2+ b2y2= 1, is –
A
(x2 + y2)2 = b2 x2 + a2y2
B
(x2 + y2)2 = b2x2 – a2y2
C
(x2 + y2)2 = a2x2 –b2y2
D
(x2 + y2)2 = a2x2 + b2y2
Answer
(x2 + y2)2 = a2x2 + b2y2
Explanation
Solution
Centre ŗ (0, 0)
any tangent y = mx + a2m2+b2
Ž mx – y + a2m2+b2 = 0
Let foot is (h, k) so mh – k + a2m2+b2 = 0
and m = – kh
So locus – kh2– k + a2k2h2+b2= 0
Ž (h2 + k2)2 = a2h2 + b2k2
or (x2 + y2)2 = a2x2 + b2y2