Solveeit Logo

Question

Question: Locus of mid-points of chords of the hyperbola \(\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} = 1\), s...

Locus of mid-points of chords of the hyperbola

x2a2y2b2=1\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} = 1, such angle between tangents at the end of the chords is 900, is:

A

x2+y2=(x2a2y2b2)2x^{2} + y^{2} = \left( \frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} \right)^{2}

B

(x2y2)=(x2a2y2b2)2(x^{2} - y^{2}) = \left( \frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} \right)^{2}

C

x2+y2=(a2b2)(x2a2y2b2)2x^{2} + y^{2} = (a^{2} - b^{2})\left( \frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} \right)^{2}

D

x2+y2=(a2b2)2(x2a2y2b2)2x^{2} + y^{2} = (a^{2} - b^{2})^{2}\left( \frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} \right)^{2}

Answer

x2+y2=(a2b2)(x2a2y2b2)2x^{2} + y^{2} = (a^{2} - b^{2})\left( \frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} \right)^{2}

Explanation

Solution

Tangents are drawn from its director circle

x2 + y2 = a2 - b2.

General point on it (a2b2(\sqrt{a^{2} - b^{2}} cos θ, a2b2\sqrt{a^{2} - b^{2}} sin θ).

Chord of contact is T = 0

a2b2xcosθa2a2b2ysinθb2=1\frac{\sqrt{a^{2} - b^{2}}x\cos\theta}{a^{2}} - \frac{\sqrt{a^{2} - b^{2}}y\sin\theta}{b^{2}} = 1Compare it

with T = S1

hxa2kyb2=h2a2k2b2\frac{hx}{a^{2}} - \frac{ky}{b^{2}} = \frac{h^{2}}{a^{2}} - \frac{k^{2}}{b^{2}}

Now ⇒ sin2θ + cos2θ = 1

k2(h2a2k2b2)2+h2(h2a2k2b2)2=(a2b2)\frac{k^{2}}{\left( \frac{h^{2}}{a^{2}} - \frac{k^{2}}{b^{2}} \right)^{2}} + \frac{h^{2}}{\left( \frac{h^{2}}{a^{2}} - \frac{k^{2}}{b^{2}} \right)^{2}} = (a^{2} - b^{2}).