Solveeit Logo

Question

Question: locus of mid point of the portion between the axis of x cosa + y sin a = p where P is a constant is...

locus of mid point of the portion between the axis of x cosa + y sin a = p where P is a constant is

A

x2 + y2 = 4p2\frac{4}{p^{2}}

B

x2 + y2 = 4p2

C

1x2+1y2=2p2\frac{1}{x^{2}} + \frac{1}{y^{2}} = \frac{2}{p^{2}}

D

1x2+1y2=4p2\frac{1}{x^{2}} + \frac{1}{y^{2}} = \frac{4}{p^{2}}

Answer

1x2+1y2=4p2\frac{1}{x^{2}} + \frac{1}{y^{2}} = \frac{4}{p^{2}}

Explanation

Solution

h = Pcosα+02\frac{\frac{P}{\cos\alpha} + 0}{2} ̃ cos a = P2h\frac{P}{2h}

k = 0+Psinα2\frac{0 + \frac{P}{\sin\alpha}}{2} ̃ sin a = P2k\frac{P}{2k}

cos2a + sin2 a = 1̃ P24h2+P24k2=1\frac{P^{2}}{4h^{2}} + \frac{P^{2}}{4k^{2}} = 1

locus of (h, k) P24x2+P24y2=1\frac{P^{2}}{4x^{2}} + \frac{P^{2}}{4y^{2}} = 1