Solveeit Logo

Question

Question: locus of mid point of chord of parabola which are at a constant lenght 2l...

locus of mid point of chord of parabola which are at a constant lenght 2l

Answer

(4axy2)(y2+4a2)=4a2l2(4ax - y^2)(y^2 + 4a^2) = 4a^2l^2

Explanation

Solution

Let the equation of the parabola be y2=4axy^2 = 4ax. Let the two endpoints of a chord be A(at12,2at1)A(at_1^2, 2at_1) and B(at22,2at2)B(at_2^2, 2at_2). The length of the chord ABAB is given as 2l2l.

Using the distance formula, the square of the length of the chord ABAB is: (2l)2=(at12at22)2+(2at12at2)2(2l)^2 = (at_1^2 - at_2^2)^2 + (2at_1 - 2at_2)^2 4l2=a2(t12t22)2+4a2(t1t2)24l^2 = a^2(t_1^2 - t_2^2)^2 + 4a^2(t_1 - t_2)^2 4l2=a2[(t1t2)(t1+t2)]2+4a2(t1t2)24l^2 = a^2[(t_1 - t_2)(t_1 + t_2)]^2 + 4a^2(t_1 - t_2)^2 4l2=a2(t1t2)2(t1+t2)2+4a2(t1t2)24l^2 = a^2(t_1 - t_2)^2(t_1 + t_2)^2 + 4a^2(t_1 - t_2)^2 4l2=a2(t1t2)2[(t1+t2)2+4]4l^2 = a^2(t_1 - t_2)^2[(t_1 + t_2)^2 + 4] --- (1)

Let (h,k)(h, k) be the midpoint of the chord ABAB. Using the midpoint formula: h=at12+at222=a2(t12+t22)h = \frac{at_1^2 + at_2^2}{2} = \frac{a}{2}(t_1^2 + t_2^2) --- (2) k=2at1+2at22=a(t1+t2)k = \frac{2at_1 + 2at_2}{2} = a(t_1 + t_2) --- (3)

From (3), we get t1+t2=kat_1 + t_2 = \frac{k}{a} --- (4) From (2), we get t12+t22=2hat_1^2 + t_2^2 = \frac{2h}{a} --- (5)

We know the identity (t1t2)2=(t1+t2)24t1t2(t_1 - t_2)^2 = (t_1 + t_2)^2 - 4t_1t_2. Also, 2t1t2=(t1+t2)2(t12+t22)2t_1t_2 = (t_1+t_2)^2 - (t_1^2+t_2^2). Substituting (4) and (5) into the expression for 2t1t22t_1t_2: 2t1t2=(ka)22ha=k2a22ha2t_1t_2 = \left(\frac{k}{a}\right)^2 - \frac{2h}{a} = \frac{k^2}{a^2} - \frac{2h}{a}

Now substitute t1+t2t_1+t_2 and 2t1t22t_1t_2 into the identity for (t1t2)2(t_1 - t_2)^2: (t1t2)2=(ka)22(k2a22ha)(t_1 - t_2)^2 = \left(\frac{k}{a}\right)^2 - 2\left(\frac{k^2}{a^2} - \frac{2h}{a}\right) (t1t2)2=k2a22k2a2+4ha(t_1 - t_2)^2 = \frac{k^2}{a^2} - \frac{2k^2}{a^2} + \frac{4h}{a} (t1t2)2=4hak2a2(t_1 - t_2)^2 = \frac{4h}{a} - \frac{k^2}{a^2} --- (6)

Now, substitute (4) and (6) into equation (1): 4l2=a2(4hak2a2)[(ka)2+4]4l^2 = a^2 \left( \frac{4h}{a} - \frac{k^2}{a^2} \right) \left[ \left( \frac{k}{a} \right)^2 + 4 \right] 4l2=a2(4ahk2a2)(k2+4a2a2)4l^2 = a^2 \left( \frac{4ah - k^2}{a^2} \right) \left( \frac{k^2 + 4a^2}{a^2} \right) 4l2=(4ahk2)(k2+4a2)a24l^2 = \frac{(4ah - k^2)(k^2 + 4a^2)}{a^2}

Multiply both sides by a2a^2: 4a2l2=(4ahk2)(k2+4a2)4a^2l^2 = (4ah - k^2)(k^2 + 4a^2)

To find the locus, replace (h,k)(h, k) with (x,y)(x, y): 4a2l2=(4axy2)(y2+4a2)4a^2l^2 = (4ax - y^2)(y^2 + 4a^2)

This is the required locus. It can also be expanded as: 4a2l2=4axy2+16a3xy44a2y24a^2l^2 = 4axy^2 + 16a^3x - y^4 - 4a^2y^2 Rearranging the terms: y44axy2+4a2y216a3x+4a2l2=0y^4 - 4axy^2 + 4a^2y^2 - 16a^3x + 4a^2l^2 = 0

The final answer is (4axy2)(y2+4a2)=4a2l2(4ax - y^2)(y^2 + 4a^2) = 4a^2l^2.