Solveeit Logo

Question

Mathematics Question on Straight lines

Locus of centroid of the triangle whose vertices are (acost,asint),(bsint,bcost)(a \cos \, t, a \sin \, t),(b \sin \, t,- b \cos \, t) and (1, 0), where t is a parameter, is

A

(3x+1)2+(3y)2=a2b2(3x +1)^2 + (3y)^2 = a^2 - b^2

B

(3x1)2+(3y)2=a2b2(3x -1)^2 + (3y)^2 = a^2 - b^2

C

(3x1)2+(3y)2=a2+b2(3x -1)^2 + (3y)^2 = a^2 + b^2

D

(3x+1)2+(3y)2=a2+b2(3x +1)^2 + (3y)^2 = a^2 + b^2

Answer

(3x1)2+(3y)2=a2+b2(3x -1)^2 + (3y)^2 = a^2 + b^2

Explanation

Solution

x=acost+bsint+13x = \frac{a \cos t + b \sin t + 1}{3} acost+bsint=3x1 \Rightarrow a \cos t + b \sin t = 3x -1 y=asintbcost3y = \frac{a \sin t - b \cos t}{3} asintbcost=3y,\Rightarrow a \sin t - b \cos t = 3y, Squaring and adding, (3x1)2+(3y)2=a2+b2\left(3x -1\right)^{2} + \left(3y\right)^{2} = a^{2} + b^{2}