Solveeit Logo

Question

Question: Locus of centroid of the triangle whose vertices are \((a\cos t,a\sin t),\mspace{6mu}(b\sin t, - b\c...

Locus of centroid of the triangle whose vertices are (acost,asint),6mu(bsint,bcost)(a\cos t,a\sin t),\mspace{6mu}(b\sin t, - b\cos t) and (1, 0), where t is a

parameter; is.

A

(3x1)2+(3y)2=a2b2(3x - 1)^{2} + (3y)^{2} = a^{2} - b^{2}

B

(3x1)2+(3y)2=a2+b2(3x - 1)^{2} + (3y)^{2} = a^{2} + b^{2}

C

(3x+1)2+(3y)2=a2+b2(3x + 1)^{2} + (3y)^{2} = a^{2} + b^{2}

D

(3x+1)2+(3y)2=a2b2(3x + 1)^{2} + (3y)^{2} = a^{2} - b^{2}

Answer

(3x1)2+(3y)2=a2+b2(3x - 1)^{2} + (3y)^{2} = a^{2} + b^{2}

Explanation

Solution

3h=acost+bsint+1,3k=asintbcost3 h = a \cos t + b \sin t + 1,3 k = a \sin t - b \cos t

a2+b2=(3h1)2+(3k)2a ^ { 2 } + b ^ { 2 } = ( 3 h - 1 ) ^ { 2 } + ( 3 k ) ^ { 2 }

(3x1)2+(3y)2=a2+b2( 3 x - 1 ) ^ { 2 } + ( 3 y ) ^ { 2 } = a ^ { 2 } + b ^ { 2 }.