Solveeit Logo

Question

Question: Locate the points representing the complex number ‘z’ for which \(\arg \left( \dfrac{z-1-i}{z-2} \ri...

Locate the points representing the complex number ‘z’ for which arg(z1iz2)=π3\arg \left( \dfrac{z-1-i}{z-2} \right)=\dfrac{\pi }{3}.

Explanation

Solution

Hint: Put ‘z = x+iy’, and now simplify the given expression, (z1iz2)\left( \dfrac{z-1-i}{z-2} \right) and convert it to standard form of complex number i.e., ‘a+ib’. Now, use the formula of argument i.e., tan1(ba){{\tan }^{-1}}\left( \dfrac{b}{a} \right) for complex number, ‘a+ib’, to get locus of z.

Complete step-by-step answer:
Let us suppose ‘z = x+iy’ in the given expression.
arg(z1iz2)=π3..................(i)\arg \left( \dfrac{z-1-i}{z-2} \right)=\dfrac{\pi }{3}..................\left( i \right)
Put ‘z = (x+iy)’, we get
\Rightarrow arg(x+iy1ix+iy2)=π3\arg \left( \dfrac{x+iy-1-i}{x+iy-2} \right)=\dfrac{\pi }{3}
Now, let us convert the above complex number to ‘a+ib’ by multiplying the conjugate of the denominator. Hence, we get
\Rightarrow arg((x1)+i(y1)(x2)+iy×(x2)iy(x2)iy)=π3\arg \left( \dfrac{\left( x-1 \right)+i\left( y-1 \right)}{\left( x-2 \right)+iy}\times \dfrac{\left( x-2 \right)-iy}{\left( x-2 \right)-iy} \right)=\dfrac{\pi }{3}
\Rightarrow arg(((x1)+i(y1))×((x2)iy)(x2)2+y2)=π3\arg \left( \dfrac{\left( \left( x-1 \right)+i\left( y-1 \right) \right)\times \left( \left( x-2 \right)-iy \right)}{{{\left( x-2 \right)}^{2}}+{{y}^{2}}} \right)=\dfrac{\pi }{3}
\Rightarrow arg((x1)(x2)+y(y1)+i(y1)(x2)iy(x1)(x2)2+y2)=π3\arg \left( \dfrac{\left( x-1 \right)\left( x-2 \right)+y\left( y-1 \right)+i\left( y-1 \right)\left( x-2 \right)-iy\left( x-1 \right)}{{{\left( x-2 \right)}^{2}}+{{y}^{2}}} \right)=\dfrac{\pi }{3}
Opening the brackets, we get
\Rightarrow arg((x23x+2+y2y)+i(xy2yx+2xy+y)(x2)2+y2)=π3\arg \left( \dfrac{\left( {{x}^{2}}-3x+2+{{y}^{2}}-y \right)+i\left( xy-2y-x+2-xy+y \right)}{{{\left( x-2 \right)}^{2}}+{{y}^{2}}} \right)=\dfrac{\pi }{3}
\Rightarrow arg((x2+y23xy+2)+i(xy+2)(x2)2+y2)=π3\arg \left( \dfrac{\left( {{x}^{2}}+{{y}^{2}}-3x-y+2 \right)+i\left( -x-y+2 \right)}{{{\left( x-2 \right)}^{2}}+{{y}^{2}}} \right)=\dfrac{\pi }{3}
\Rightarrow arg((x2+y23xy+2)(x2)2+y2+i(xy+2)(x2)2+y2)=π3\arg \left( \dfrac{\left( {{x}^{2}}+{{y}^{2}}-3x-y+2 \right)}{{{\left( x-2 \right)}^{2}}+{{y}^{2}}}+i\dfrac{\left( -x-y+2 \right)}{{{\left( x-2 \right)}^{2}}+{{y}^{2}}} \right)=\dfrac{\pi }{3}……………….(ii)
Now, we know that argument of any complex number ‘a+ib’ is given by the relation
arg(a+ib)=tan1(ba)..............(iii)\arg \left( a+ib \right)={{\tan }^{-1}}\left( \dfrac{b}{a} \right)..............\left( iii \right)
Hence, using equation (iii), we can get argument of equation (ii) as
\Rightarrow tan1(xy+2(x2)2+y2x2+y23xy+2(x2)2+y2)=π3{{\tan }^{-1}}\left( \dfrac{\dfrac{-x-y+2}{{{\left( x-2 \right)}^{2}}+{{y}^{2}}}}{\dfrac{{{x}^{2}}+{{y}^{2}}-3x-y+2}{{{\left( x-2 \right)}^{2}}+{{y}^{2}}}} \right)=\dfrac{\pi }{3}
Cancelling the like terms and transferring tan1{{\tan }^{-1}} function to other side, hence we get
\Rightarrow xy+2x2+y23xy+2=tanπ3\dfrac{-x-y+2}{{{x}^{2}}+{{y}^{2}}-3x-y+2}=\tan \dfrac{\pi }{3}
Substituting the value of right hand side, we get
\Rightarrow xy+2x2+y23xy+2=3\dfrac{-x-y+2}{{{x}^{2}}+{{y}^{2}}-3x-y+2}=\sqrt{3}
Now, on cross multiplying above relation, we get an equation as
\Rightarrow xy+23=x2+y23xy+2\dfrac{-x-y+2}{\sqrt{3}}={{x}^{2}}+{{y}^{2}}-3x-y+2
x2+y23xy+2=x3y3+23{{x}^{2}}+{{y}^{2}}-3x-y+2=\dfrac{-x}{\sqrt{3}}-\dfrac{y}{\sqrt{3}}+\dfrac{2}{\sqrt{3}}
x2+y2+x(133)+y(131)+223=0...........(iv){{x}^{2}}+{{y}^{2}}+x\left( \dfrac{1}{\sqrt{3}}-3 \right)+y\left( \dfrac{1}{\sqrt{3}}-1 \right)+2-\dfrac{2}{\sqrt{3}}=0...........\left( iv \right)
Now, on comparing the above equation with the standard equation of circle, i.e.,
x2+y2+2gx+2fy+c=0{{x}^{2}}+{{y}^{2}}+2gx+2fy+c=0
We can observe that equation (iv) is representing an equation of circle, where
2g=(133),2f=(131),c=2232g=\left( \dfrac{1}{\sqrt{3}}-3 \right),2f=\left( \dfrac{1}{\sqrt{3}}-1 \right),c=2-\dfrac{2}{\sqrt{3}}
Hence, the locus of point ‘z’ by the given relation arg(z1iz2)=π3\arg \left( \dfrac{z-1-i}{z-2} \right)=\dfrac{\pi }{3} is a circle.

Note: One can prove the locus of the points of ‘z’ from a given equation by using the property of a circle that is angle formed by a chord in the same segment will represent a circle. But this will be a lengthy process.
Hence, given relation can be generalize such that equation
arg(z1iz2)=θ(θπ)\arg \left( \dfrac{z-1-i}{z-2} \right)=\theta \left( \theta \ne \pi \right)or(θ0)\left( \theta \ne 0 \right)
Will always represent a circle where θ\theta is less than 180{{180}^{\circ }} .