Solveeit Logo

Question

Question: lithium borohydride \(\left( {{\text{LiB}}{{\text{H}}_4}} \right)\) crystallizes in an orthorhombic ...

lithium borohydride (LiBH4)\left( {{\text{LiB}}{{\text{H}}_4}} \right) crystallizes in an orthorhombic system with 44molecules per unit cell. The unit cell dimensions are a=6.8\buildrelA{\text{6}}{\text{.8}}{\buildrel _{\circ} \over {\mathrm{A}}}, b=4.4\buildrelA{\text{4}}{\text{.4}}\,{\buildrel _{\circ} \over {\mathrm{A}}}and c=7.2\buildrelA{\text{7}}{\text{.2}}\,{\buildrel _{\circ} \over {\mathrm{A}}}. If the molar mass of the compound is 21.76g/mol21.76\,{\text{g/mol}}, the density (in gcm3{\text{g}}\,{\text{c}}{{\text{m}}^{ - 3}} ) of the compound will be:
A. 0.670.67
B.0.330.33
C.1.721.72
D. none of theses

Explanation

Solution

We should know the density formula to determine the answer. Density depends upon the number of atoms, mass and volume of a unit cell. Volume of the unit cell depends upon the dimension of the unit cell. The product of all dimensions gives the volume of an orthorhombic unit cell.

Formula used: d = zmNaV{\text{d}}\,{\text{ = }}\dfrac{{{\text{z}}\,{\text{m}}}}{{{{\text{N}}_{\text{a}}}{\text{V}}}}

Complete step-by-step answer:
The formula to calculate the density of cubic lattice is as follows:
d=zmNaVd\, = \dfrac{{z\,m}}{{{N_a}{\text{V}}}}
Where,
dd is the density.
zz is the number of atoms in a unit cell.
mm is the molar mass of the metal.
Na{N_a} is the Avogadro number.
V{\text{V}} is the volume of a unit cell.
We know that the volume of an orthorhombic unit cell is the product of the dimensions of the unit cell. The unit cell dimensions are a=6.8\buildrelA{\text{6}}{\text{.8}}{\buildrel _{\circ} \over {\mathrm{A}}}, b=4.4\buildrelA{\text{4}}{\text{.4}}\,{\buildrel _{\circ} \over {\mathrm{A}}}and c=7.2\buildrelA{\text{7}}{\text{.2}}\,{\buildrel _{\circ} \over {\mathrm{A}}}. So, volume of orthorhombic unit cell is,
1\buildrelA=1010m{\Rightarrow \text{1}}\,{\buildrel _{\circ} \over {\mathrm{A}}}\, = \,{10^{ - 10}}{\text{m}}
V=6.8×1010×4.4×1010×7.2×1010\Rightarrow {\text{V}}\,\, = {\text{6}}{\text{.8}} \times {\text{1}}{{\text{0}}^{ - 10}} \times {\text{4}}{\text{.4}} \times {\text{1}}{{\text{0}}^{ - 10}} \times {\text{7}}{\text{.2}} \times {\text{1}}{{\text{0}}^{ - 10}}
V=215.424×1030m3\Rightarrow {\text{V}}\,\, = {\text{215}}{\text{.424}} \times {\text{1}}{{\text{0}}^{ - 30}}\,{{\text{m}}^{\text{3}}}
We will convert volume from meter to centimetre as follows:
1m3=(100)3cm3\Rightarrow 1\,{{\text{m}}^{\text{3}}}\, = \,{\left( {100} \right)^3}\,{\text{c}}{{\text{m}}^3}
215.424×1030m3=215.424×1024cm3\Rightarrow {\text{215}}{\text{.424}} \times {\text{1}}{{\text{0}}^{ - 30}}\,{{\text{m}}^{\text{3}}} = {\text{215}}{\text{.424}} \times {\text{1}}{{\text{0}}^{ - 24}}\,{\text{c}}{{\text{m}}^{\text{3}}}
It is given that an orthorhombic system has 44molecules per unit cell, so the number of atoms will be44.
Substitute 44 for number of atoms, 21.76g/mol21.76\,{\text{g/mol}} for molar mass of the compound, 6.02×1023mol16.02 \times {10^{23}}\,{\text{mo}}{{\text{l}}^{ - 1}}for Avogadro number, 215.424×1024cm3{\text{215}}{\text{.424}} \times {\text{1}}{{\text{0}}^{ - 24}}\,{\text{c}}{{\text{m}}^{\text{3}}}for unit cell volume.
d=4×21.76g/mol6.02×1023mol1×215.424×1024cm3\Rightarrow {\text{d}}\, = \dfrac{{4 \times 21.76\,{\text{g/mol}}}}{{6.02 \times {{10}^{23}}\,{\text{mo}}{{\text{l}}^{ - 1}}\, \times {\text{215}}{\text{.424}} \times {\text{1}}{{\text{0}}^{ - 24}}\,{\text{c}}{{\text{m}}^{\text{3}}}}}
d = 87.04g129.7cm3\Rightarrow {\text{d}}\,{\text{ = }}\dfrac{{{\text{87}}{\text{.04}}\,{\text{g}}}}{{{\text{129}}{\text{.7}}\,{\text{c}}{{\text{m}}^{\text{3}}}}}
d = 0.67g/cm3\Rightarrow {\text{d}}\,{\text{ = 0}}{\text{.67}}\,\,{\text{g/c}}{{\text{m}}^{\text{3}}}
So, the density of the compound is0.67g/cm30.67\,\,{\text{g/c}}{{\text{m}}^3}.

Therefore, option (A) 0.670.67 is the correct answer.

Note: The value of the number of atoms depends upon the type of lattice. For face-centred cubic lattice, the number of atoms is four whereas two for body-centred and one for simple cubic lattice. In orthorhombic unit cell all dimensions are unequal abc{\text{a}} \ne {\text{b}} \ne {\text{c}}but angel in all faces are equal to 90o{\text{9}}{{\text{0}}^{\text{o}}} α=β=γ = 90o\alpha = \beta = \gamma \,{\text{ = }}\,\,{\text{9}}{{\text{0}}^{\text{o}}}. In FCC and BCC are dimensions are equal so, the volume of the unit cell is given as a3{a^3} where, a is the unit cell length so the formula of density for FCC and BCC is, d=zmNaa3d\, = \dfrac{{z\,m}}{{{N_a}{a^3}}}.