Solveeit Logo

Question

Question: list all formulas related to projectile motion required for jee mains...

list all formulas related to projectile motion required for jee mains

Answer
  1. ux=ucosθ,  uy=usinθu_x = u \cos\theta, \; u_y = u \sin\theta

  2. x=ucosθtx = u \cos\theta \, t

  3. y=usinθt12gt2y = u \sin\theta \, t - \frac{1}{2} g t^2

  4. T=2usinθgT = \frac{2u\sin\theta}{g}

  5. H=u2sin2θ2gH = \frac{u^2 \sin^2\theta}{2g}

  6. R=u2sin(2θ)gR = \frac{u^2 \sin(2\theta)}{g}

  7. tmax=usinθgt_{\text{max}} = \frac{u\sin\theta}{g}

  8. y=xtanθgx22u2cos2θy = x\tan\theta - \frac{g x^2}{2u^2\cos^2\theta}

  9. vy=usinθgtv_y = u\sin\theta - gt

  10. v=(ucosθ)2+(usinθgt)2v = \sqrt{(u\cos\theta)^2 + (u\sin\theta - gt)^2}

Explanation

Solution

Below is a list of the key formulas for projectile motion that you need to know for JEE Mains:

  1. Decomposition of the initial velocity:

    ux=ucosθ,uy=usinθu_x = u \cos\theta,\quad u_y = u \sin\theta
  2. Horizontal displacement:

    x=ucosθtx = u \cos\theta \, t
  3. Vertical displacement:

    y=usinθt12gt2y = u \sin\theta \, t - \frac{1}{2} g t^2
  4. Time of flight (total time in air):

    T=2usinθgT = \frac{2u\sin\theta}{g}
  5. Maximum height attained:

    H=u2sin2θ2gH = \frac{u^2\sin^2\theta}{2g}
  6. Range of the projectile:

    R=u2sin(2θ)gR = \frac{u^2\sin(2\theta)}{g}
  7. Time to reach maximum height:

    tmax=usinθgt_{\text{max}} = \frac{u\sin\theta}{g}
  8. Trajectory equation (path of the projectile):

    y=xtanθgx22u2cos2θy = x\tan\theta - \frac{g x^2}{2u^2\cos^2\theta}
  9. Vertical component of velocity at any time tt:

    vy=usinθgtv_y = u\sin\theta - gt
  10. Speed at any time tt (combining horizontal and vertical components):

    v=(ucosθ)2+(usinθgt)2v = \sqrt{(u\cos\theta)^2 + (u\sin\theta - gt)^2}

Explanation (Minimal and to the point):

  • Step 1: Resolve the initial velocity into horizontal (ucosθu\cos\theta) and vertical (usinθu\sin\theta) components.
  • Step 2: Use horizontal motion x=ucosθtx = u\cos\theta\, t (with no acceleration) and vertical motion y=usinθt12gt2y = u\sin\theta\, t - \frac{1}{2}gt^2 (with gravitational acceleration) to derive other quantities.
  • Step 3: Derive key quantities like time of flight, maximum height, and range using the condition when vertical displacement or velocity at the peak becomes zero.
  • Step 4: Combine the component formulas to form the trajectory equation and determine the speed at any time.