Solveeit Logo

Question

Chemistry Question on Solutions

Liquids A and B form an ideal solution at 30°C, the total vapour pressure of a solution containing 1 mol of A and 2 mol of B is 250 mmHg. The total vapour pressure becomes 300 mmHg when 1 more mol of A is added to the first solution. The vapour pressures of pure A and B at the same temperature are

A

150, 450 mmHg

B

125, 150 mmHg

C

450, 150 mmHg

D

250, 300 mmHg

Answer

450, 150 mmHg

Explanation

Solution

Let vapour pressure of A=PA0A = P^0_A and vapour pressure of B=Pb0B = P^0_b

In the first case,

Mole fraction of A(xA)=11+2=13A\left(x_{A}\right)=\frac{1}{1+2}=\frac{1}{3}

Mole fraction of B(xB)=21+2=23B\left(x_{B}\right)=\frac{2}{1+2}=\frac{2}{3}

According to Raoult's law,

Total vapour pressure =250=PA0xA+PB0xB=250=P^{0}_{A}x_{A}+P^{0}_{B}x_{B}

250=13PA0+23PB0...(i)250=\frac{1}{3}P^{0}_{A}+\frac{2}{3}P^{0}_{B} \,...\left(i\right)

In the second case,

Mole fraction of A(xA)=22+2=24=12A\left(x_{A}\right)=\frac{2}{2+2}=\frac{2}{4}=\frac{1}{2}

Mole fraction of B(xB)=24=12B\left(x_{B}\right)=\frac{2}{4}=\frac{1}{2}

\therefore Total vapour pressure

300=PA0xA+PB0xB300=P^{0}_{A}x_{A}+P^{0}_{B}x_{B}

300=12PA0+12PB0...(ii)300=\frac{1}{2}P^{0}_{A}+\frac{1}{2}P^{0}_{B}...(ii)

Multiplying equation (i)(i) by 12\frac{1}{2} and equation (ii)\left(ii\right) by 13\frac{1}{3}

16PA0+26PA0=125\frac{1}{6}P^{0}_{A}+\frac{2}{6}P^{0}_{A}=125

16PA0+16PB0=10016PB0=25\frac{\frac{1}{6}P^{0}_{A}+\frac{1}{6}P^{0}_{B}=100}{\frac{1}{6}P^{0}_{B}=25}

PB0=25×6=150mmHgP^{0}_{B}=25\times6=150\,mm \,Hg

Now, substitute the value of PB0=25P^{0}_{B}=25 in equation (ii), we get

300=PA0×12+150×12300=P^{0}_{A}\times\frac{1}{2}+150\times\frac{1}{2}

PA0=450mmHgP^{0}_{A}=450\,mmHg