Solveeit Logo

Question

Question: Liquid benzene burns in oxygen according to: \({\text{2}}{{\text{C}}_{\text{6}}}{{\text{H}}_{\text...

Liquid benzene burns in oxygen according to:
2C6H6+15O212CO2 + 6H2O{\text{2}}{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{6}}}\, + \,15{{\text{O}}_{\text{2}}}\, \to \,1{\text{2C}}{{\text{O}}_{\text{2}}}\,{\text{ + }}\,{\text{6}}\,{{\text{H}}_{\text{2}}}{\text{O}}
If density of liquid benzene is 0.880.88 g/cc, what volume of O2{{\text{O}}_{\text{2}}} at STP is needed to complete the combustion of 3939 cc of liquid benzene?
A. 11.211.2 litre
B. 7474 litre
C. 0.074m30.074\,{{\text{m}}^3}
D. 37dm337\,{\text{d}}{{\text{m}}^3}

Explanation

Solution

By using density formula we will determine the mass of benzene then we will calculate the mole of benzene. We will calculate the volume of oxygen by using STP condition. Then we will compare the volume of oxygen with the mole of benzene to determine the volume of oxygen.

Complete step-by-step solution: The STP is known as standard temperature and pressure. The value of standard temperature in kelvin is 298K298\,{\text{K}}. The value of the standard pressure in atm is 1atm{\text{1}}\,{\text{atm}}. One mole of a gas at 298K298\,{\text{K}} temperature and 1atm{\text{1}}\,{\text{atm}} pressure occupies 22.4L22.4\,{\text{L}} volume.
The given reaction is as follows:
2C6H6+15O212CO2 + 6H2O{\text{2}}{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{6}}}\, + \,15{{\text{O}}_{\text{2}}}\, \to \,1{\text{2C}}{{\text{O}}_{\text{2}}}\,{\text{ + }}\,{\text{6}}\,{{\text{H}}_{\text{2}}}{\text{O}}
According to the above reaction 15{\text{15}} mole oxygen is reacting at STP.
1{\text{1}} mole oxygen gas at STP = 22.4L22.4\,{\text{L}} volume
15{\text{15}} mole oxygen gas at STP = 336L336\,{\text{L}} volume
Now, we will determine the mass of liquid benzene as follows:
density = massvolume{\text{density}}\,{\text{ = }}\,\dfrac{{{\text{mass}}}}{{{\text{volume}}}}
On substituting 0.880.88 g/cc for density and 3939cc for volume of liquid benzene,
0.88g/cc = mass39cc0.88\,{\text{g/cc}}\,{\text{ = }}\,\dfrac{{{\text{mass}}}}{{{\text{39}}\,{\text{cc}}}}
mass=0.88g/cc×39cc\Rightarrow {\text{mass}}\, = \,0.88\,{\text{g/cc}}\,\, \times {\text{39}}\,{\text{cc}}
mass=34.32g\Rightarrow {\text{mass}}\, = \,34.32\,{\text{g}}
So, the mass of liquid benzene is 34.32g34.32\,{\text{g}}.
Now, we will determine the mole of liquid benzene as follows:
mole = massmolarmass{\text{mole}}\,{\text{ = }}\,\dfrac{{{\text{mass}}}}{{{\text{molar}}\,{\text{mass}}}}
Molar mass of benzene is 7878g/mol.
On substituting 34.32g34.32\,{\text{g}} for mass and 7878g/mol for molar mass,
mole = 34.32g78g/mol{\text{mole}}\,{\text{ = }}\,\dfrac{{34.32\,{\text{g}}}}{{{\text{78}}\,{\text{g/mol}}}}
mole = 0.44\Rightarrow {\text{mole}}\,{\text{ = }}\,0.44
So, the mole of liquid benzene is 0.440.44 mol.
According to the given reaction 2C6H6+15O212CO2 + 6H2O{\text{2}}{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{6}}}\, + \,15{{\text{O}}_{\text{2}}}\, \to \,1{\text{2C}}{{\text{O}}_{\text{2}}}\,{\text{ + }}\,{\text{6}}\,{{\text{H}}_{\text{2}}}{\text{O}},
22 mole of liquid benzene is reacting with 336L336\,{\text{L}} volume of oxygen at STP so, 0.440.44 mole of liquid benzene will react,
2mol C6H6 = 336LO2{\text{2mol }}{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{6}}}\,{\text{ = }}\,{\text{336}}\,{\text{L}}\,{{\text{O}}_{\text{2}}}\,
0.44mol C6H6 = 74LO2\Rightarrow {\text{0}}{\text{.44}}\,{\text{mol }}{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{6}}}\,{\text{ = }}\,{\text{74}}\,\,{\text{L}}\,{{\text{O}}_{\text{2}}}\,
So, the volume of O2{{\text{O}}_{\text{2}}} at STP is needed to complete the combustion of 3939 cc of liquid benzene is 7474 L.

Therefore, option (B) 7474L, is correct.

Note: We can also determine the moles of oxygen using in the reaction by comparing the stoichiometry. By stoichiometry comparison we will get the moles of oxygen then we will determine the volume of oxygen by using STP condition.