Solveeit Logo

Question

Question: Consider the polynomial P(x) = (x - cos 36°)(x - cos 84°)(x - cos156°)...

Consider the polynomial P(x) = (x - cos 36°)(x - cos 84°)(x - cos156°)

A

0

B

1

C

-12\frac{1}{2}

D

512\frac{\sqrt{5}-1}{2}

Answer

0

Explanation

Solution

The roots of the polynomial are cos36,cos84,cos156\cos 36^\circ, \cos 84^\circ, \cos 156^\circ. These are of the form cosθ,cos(120θ),cos(120+θ)\cos \theta, \cos(120^\circ - \theta), \cos(120^\circ + \theta) with θ=36\theta = 36^\circ. Such values are the roots of 4x33xcos(3θ)=04x^3 - 3x - \cos(3\theta) = 0. Dividing by 4, we get x334x14cos(3×36)=0x^3 - \frac{3}{4}x - \frac{1}{4}\cos(3 \times 36^\circ) = 0. In this equation, the coefficient of x2x^2 is 0.