Solveeit Logo

Question

Question: Lines \[{{L}_{1}}:\dfrac{x-6}{3}=\dfrac{y-4}{2}=z-2\] and \[{{L}_{2}}:\dfrac{x-8}{4}=y-2=\dfrac{z-4}...

Lines L1:x63=y42=z2{{L}_{1}}:\dfrac{x-6}{3}=\dfrac{y-4}{2}=z-2 and L2:x84=y2=z42{{L}_{2}}:\dfrac{x-8}{4}=y-2=\dfrac{z-4}{2} meets plane π:r(2i^+j^k^)=7\pi :\overrightarrow{r}\cdot (2\widehat{i}+\widehat{j}-\widehat{k})=7at points A,BA,B then find area of triangle formed by the lines L1,L2{{L}_{1}},{{L}_{2}} and ABAB is :
A). 72192\dfrac{7}{2}\sqrt{\dfrac{19}{2}}
B). 192\sqrt{\dfrac{19}{2}}
C). 114\dfrac{\sqrt{11}}{4}
D). 656\sqrt{5}

Explanation

Solution

First of all assume the point of intersection of both the lines be λ\lambda and μ\mu after that find out the value of λ\lambda and μ\mu by equating the equations, then find out the value of plane of line by applying vector dot product and we can find out the point of intersection of AA and BB then find out the area of triangle and check which option is correct in the above given options.

Complete step-by-step solution:
We have given two lines:
L1:x63=y42=z2\Rightarrow {{L}_{1}}:\dfrac{x-6}{3}=\dfrac{y-4}{2}=z-2 mark it as equation (1)(1)
L2:x84=y2=z42\Rightarrow {{L}_{2}}:\dfrac{x-8}{4}=y-2=\dfrac{z-4}{2} mark it as equation (2)(2)
Let the point of intersection for equation (1)(1)be λ\lambda
Now according to equation (1)(1) we will find out the values of x,y,zx,y,z
x63=λ\Rightarrow \dfrac{x-6}{3}=\lambda
x6=3λ\Rightarrow x-6=3\lambda
x=3λ+6\Rightarrow x=3\lambda +6 mark it as equation (3)(3)
Similarly find out the value of yy
y42=λ\Rightarrow \dfrac{y-4}{2}=\lambda
y4=2λ\Rightarrow y-4=2\lambda
y=2λ+4\Rightarrow y=2\lambda +4 mark it as equation (4)(4)
Now find the value of zz
z2=λ\Rightarrow z-2=\lambda
z=λ+2\Rightarrow z=\lambda +2 mark it as equation (5)(5)
Let the point of intersection for equation (2)(2)be μ\mu
Now according to equation (2)(2) we will find out the values of x,y,zx,y,z
x84=μ\Rightarrow \dfrac{x-8}{4}=\mu
x8=4μ\Rightarrow x-8=4\mu
x=4μ+8\Rightarrow x=4\mu +8 mark it as equation (6)(6)
Similarly find out the value of yy
y2=μ\Rightarrow y-2=\mu
y=μ+2\Rightarrow y=\mu +2 mark it as equation (7)(7)
Now find the value of zz
z42=μ\Rightarrow \dfrac{z-4}{2}=\mu
z4=2μ\Rightarrow z-4=2\mu
z=2μ+4\Rightarrow z=2\mu +4 mark it as equation (8)(8)
Equating the equation (3)(3) and (6)(6) we get:
3λ+6=4μ+8\Rightarrow 3\lambda +6=4\mu +8
3λ4μ=86\Rightarrow 3\lambda -4\mu =8-6
3λ4μ=2\Rightarrow 3\lambda -4\mu =2 mark it as equation (9)(9)
Equating the equation (4)(4) and (7)(7) we get:
2λ+4=μ+2\Rightarrow 2\lambda +4=\mu +2
2λμ=24\Rightarrow 2\lambda -\mu =2-4
2λμ=2\Rightarrow 2\lambda -\mu =-2 mark it as equation (10)(10)
Now to find the value of λ\lambda we will multiply equation (10)(10) by 44 on both sides, then subtract it from equation (9)(9) we will get:
(2λμ)×4=2×4\Rightarrow \left( 2\lambda -\mu \right)\times 4=-2\times 4
8λ4μ=8\Rightarrow 8\lambda -4\mu =-8
Now subtract equation (9)(9) from it:
8λ4μ(3λ4μ)=82\Rightarrow 8\lambda -4\mu -\left( 3\lambda -4\mu \right)=-8-2
8λ4μ3λ+4μ=10\Rightarrow 8\lambda -4\mu -3\lambda +4\mu =-10
5λ=10\Rightarrow 5\lambda =-10
λ=105\Rightarrow \lambda =-\dfrac{10}{5}
λ=2\Rightarrow \lambda =-2
Hence the point of intersection will be C(0,0,0)C(0,0,0)
We have given π:r(2i^+j^k^)=7\pi :\overrightarrow{r}\cdot (2\widehat{i}+\widehat{j}-\widehat{k})=7
As we know that r=xi^+yj^+zk^\overrightarrow{r}=x\widehat{i}+y\widehat{j}+z\widehat{k} , put the value of r\overrightarrow{r} we get:
xi^+yj^+zk^(2i^+j^k^)=7\Rightarrow x\widehat{i}+y\widehat{j}+z\widehat{k}\cdot (2\widehat{i}+\widehat{j}-\widehat{k})=7
Apply dot product:
2x+yz=7\Rightarrow 2x+y-z=7
We will find the intersection point for L1{{L}_{1}} by putting the values of x,y,zx,y,z from equation (3),(4),(5)(3),(4),(5)
2x+yz=7\Rightarrow 2x+y-z=7
2(3λ+6)+2λ+4(λ+2)=7\Rightarrow 2\left( 3\lambda +6 \right)+2\lambda +4-\left( \lambda +2 \right)=7
6λ+12+2λ+4λ2=7\Rightarrow 6\lambda +12+2\lambda +4-\lambda -2=7
7λ=7\Rightarrow 7\lambda =-7
λ=1\Rightarrow \lambda =-1
Point AA will be: (3λ+6,2λ+4,λ+2)\left( 3\lambda +6,2\lambda +4,\lambda +2 \right)
Put the value of λ\lambda we get:
A(3,2,1)\Rightarrow A(3,2,1)
We will find the intersection point for L2{{L}_{2}} by putting the values of x,y,zx,y,z from equation (6),(7),(8)(6),(7),(8)
2x+yz=7\Rightarrow 2x+y-z=7
2(4μ+8)+μ+2(2μ+4)=7\Rightarrow 2\left( 4\mu +8 \right)+\mu +2-\left( 2\mu +4 \right)=7
8μ+16+μ+22μ4=7\Rightarrow 8\mu +16+\mu +2-2\mu -4=7
7μ=7\Rightarrow 7\mu =-7
μ=1\Rightarrow \mu =-1
Point BB will be: (4μ+8,μ+2,2μ+4)\left( 4\mu +8,\mu +2,2\mu +4 \right)
Put the value of μ\mu we get:
B(4,1,2)\Rightarrow B(4,1,2)
Hence to find the area of triangle will be:

If we write it in vector form then:
AC=3i^+2j^+k^\Rightarrow \overrightarrow{AC}=3\widehat{i}+2\widehat{j}+\widehat{k}
BC=4i^+j^+2k^\Rightarrow \overrightarrow{BC}=4\widehat{i}+\widehat{j}+2\widehat{k}
Area of triangle=12AC×BC\Rightarrow \text{Area of triangle=}\dfrac{1}{2}\left| \overrightarrow{AC}\times \overrightarrow{BC} \right|
Now we will find the value of AC×BC\overrightarrow{AC}\times \overrightarrow{BC}

& \widehat{i}\text{ }\widehat{j}\text{ }\widehat{k} \\\ & 3\text{ }2\text{ }1 \\\ & 4\text{ }1\text{ }2 \\\ \end{aligned} \right|$$ $$=3\widehat{i}-\widehat{j}(2)+\widehat{k}(-5)$$ $$= 3\widehat{i}-2\widehat{j}-5\widehat{k}$$ $$\Rightarrow \left| \overrightarrow{AC}\times \overrightarrow{BC} \right|=\sqrt{9+4+25}$$ $$\Rightarrow \left| \overrightarrow{AC}\times \overrightarrow{BC} \right|=\sqrt{38}$$ Therefore Area of triangle $$ABC$$ will be $$\Rightarrow \dfrac{1}{2}\times \sqrt{38}$$ $$= \dfrac{\sqrt{38}}{2}$$ $$= \dfrac{\sqrt{2}\times \sqrt{19}}{2}$$ $$= \dfrac{\sqrt{2}\times \sqrt{19}}{2}\times \dfrac{\sqrt{2}}{\sqrt{2}}$$ $$= \dfrac{2\times \sqrt{19}}{2\sqrt{2}}$$ $$=\sqrt{\dfrac{19}{2}}$$ **Hence option $$(B)$$ is correct as the area of the triangle is $$\sqrt{\dfrac{19}{2}}$$.** **Note:** Students you know that the total of a triangle's interior angles is always 180o, regardless of how the triangle is created and no matter how a triangle is made, it can always be broken into two right triangles. Any of a triangle's sides is shorter than the total of the other two sides.