Solveeit Logo

Question

Question: Line through $P(a, 2)$ meets the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$ at A and D and meets th...

Line through P(a,2)P(a, 2) meets the ellipse x29+y24=1\frac{x^2}{9} + \frac{y^2}{4} = 1 at A and D and meets the coordinate axes at B and C so that PA, PB, PC, PD are in G.P., then possible values of a can be:

A

6

B

-6

C

13/2

D

-13/2

Answer

a can be any real number with magnitude greater than or equal to 6.

Explanation

Solution

Let the line through P(a,2)P(a, 2) be parameterized by x=a+rcosθx = a + r \cos\theta and y=2+rsinθy = 2 + r \sin\theta, where rr is the signed distance from PP.

  1. Distances to coordinate axes:
  • For point B on the x-axis (y=0y=0): 0=2+rBsinθ    rB=2/sinθ0 = 2 + r_B \sin\theta \implies r_B = -2/\sin\theta. So PB=rB=2/sinθPB = |r_B| = 2/|\sin\theta|.

  • For point C on the y-axis (x=0x=0): 0=a+rCcosθ    rC=a/cosθ0 = a + r_C \cos\theta \implies r_C = -a/\cos\theta. So PC=rC=a/cosθPC = |r_C| = |a|/|\cos\theta|.

  1. Distances to the ellipse:

Substitute x=a+rcosθx = a + r \cos\theta and y=2+rsinθy = 2 + r \sin\theta into the ellipse equation x29+y24=1\frac{x^2}{9} + \frac{y^2}{4} = 1:

4(a+rcosθ)2+9(2+rsinθ)2=364(a + r \cos\theta)^2 + 9(2 + r \sin\theta)^2 = 36 4(a2+2arcosθ+r2cos2θ)+9(4+4rsinθ+r2sin2θ)=364(a^2 + 2ar\cos\theta + r^2\cos^2\theta) + 9(4 + 4r\sin\theta + r^2\sin^2\theta) = 36 4a2+8arcosθ+4r2cos2θ+36+36rsinθ+9r2sin2θ=364a^2 + 8ar\cos\theta + 4r^2\cos^2\theta + 36 + 36r\sin\theta + 9r^2\sin^2\theta = 36 r2(4cos2θ+9sin2θ)+r(8acosθ+36sinθ)+4a2=0r^2(4\cos^2\theta + 9\sin^2\theta) + r(8a\cos\theta + 36\sin\theta) + 4a^2 = 0

Let rAr_A and rDr_D be the roots of this quadratic equation. These are the signed distances from PP to AA and DD. The product of the distances PAPD=rArD=4a24cos2θ+9sin2θ=4a24cos2θ+9sin2θPA \cdot PD = |r_A r_D| = \left|\frac{4a^2}{4\cos^2\theta + 9\sin^2\theta}\right| = \frac{4a^2}{4\cos^2\theta + 9\sin^2\theta}.

  1. G.P. condition:

If PA, PB, PC, PD are in G.P., then PAPD=PBPCPA \cdot PD = PB \cdot PC.

Substitute the expressions for the products: 4a24cos2θ+9sin2θ=(2sinθ)(acosθ)\frac{4a^2}{4\cos^2\theta + 9\sin^2\theta} = \left(\frac{2}{|\sin\theta|}\right) \left(\frac{|a|}{|\cos\theta|}\right)

If a=0a=0, then P=(0,2)P=(0,2). This point lies on the ellipse, so PA=0PA=0. For the distances to be in G.P., all terms must be zero. This would require PB=0PB=0, which means PP is on the x-axis, which is false for P(0,2)P(0,2). Thus a0a \ne 0.

Since a0a \ne 0, we can divide by a|a|: 4a4cos2θ+9sin2θ=2sinθcosθ\frac{4|a|}{4\cos^2\theta + 9\sin^2\theta} = \frac{2}{|\sin\theta\cos\theta|} 2asinθcosθ=4cos2θ+9sin2θ2|a| |\sin\theta\cos\theta| = 4\cos^2\theta + 9\sin^2\theta a2sinθcosθ=4cos2θ+9sin2θ|a| |2\sin\theta\cos\theta| = 4\cos^2\theta + 9\sin^2\theta asin(2θ)=4cos2θ+9sin2θ|a| |\sin(2\theta)| = 4\cos^2\theta + 9\sin^2\theta

We can rewrite 4cos2θ+9sin2θ=4(1sin2θ)+9sin2θ=4+5sin2θ4\cos^2\theta + 9\sin^2\theta = 4(1-\sin^2\theta) + 9\sin^2\theta = 4 + 5\sin^2\theta. So, asin(2θ)=4+5sin2θ|a| |\sin(2\theta)| = 4 + 5\sin^2\theta.

a=4+5sin2θsin(2θ)|a| = \frac{4 + 5\sin^2\theta}{|\sin(2\theta)|}

To find the possible values of a|a|, we need to find the range of the right-hand side.

Let s=sin2θs = \sin^2\theta. Then sin(2θ)=2sinθcosθ=2sinθ1sin2θ=2s(1s)|\sin(2\theta)| = |2\sin\theta\cos\theta| = |2\sin\theta\sqrt{1-\sin^2\theta}| = 2\sqrt{s(1-s)}. a=4+5s2s(1s)|a| = \frac{4+5s}{2\sqrt{s(1-s)}}

Square both sides: a2=(4+5s)24s(1s)a^2 = \frac{(4+5s)^2}{4s(1-s)} 4a2s(1s)=(4+5s)24a^2s(1-s) = (4+5s)^2 4a2s4a2s2=16+40s+25s24a^2s - 4a^2s^2 = 16 + 40s + 25s^2 s2(25+4a2)+s(404a2)+16=0s^2(25+4a^2) + s(40-4a^2) + 16 = 0

For ss to be a real value, the discriminant must be non-negative: D=(404a2)24(25+4a2)(16)0D = (40-4a^2)^2 - 4(25+4a^2)(16) \ge 0 (10a2)24(25+4a2)0(10-a^2)^2 - 4(25+4a^2) \ge 0 10020a2+a410016a20100 - 20a^2 + a^4 - 100 - 16a^2 \ge 0 a436a20a^4 - 36a^2 \ge 0 a2(a236)0a^2(a^2 - 36) \ge 0

Since a0a \ne 0, a2>0a^2 > 0. Therefore, we must have a2360a^2 - 36 \ge 0, which implies a236a^2 \ge 36. So, a6|a| \ge 6.

Any value of aa such that a6|a| \ge 6 is a possible value.