Question
Question: Line through $P(a, 2)$ meets the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$ at A and D and meets th...
Line through P(a,2) meets the ellipse 9x2+4y2=1 at A and D and meets the coordinate axes at B and C so that PA, PB, PC, PD are in G.P., then possible values of a can be:

6
-6
13/2
-13/2
a can be any real number with magnitude greater than or equal to 6.
Solution
Let the line through P(a,2) be parameterized by x=a+rcosθ and y=2+rsinθ, where r is the signed distance from P.
- Distances to coordinate axes:
-
For point B on the x-axis (y=0): 0=2+rBsinθ⟹rB=−2/sinθ. So PB=∣rB∣=2/∣sinθ∣.
-
For point C on the y-axis (x=0): 0=a+rCcosθ⟹rC=−a/cosθ. So PC=∣rC∣=∣a∣/∣cosθ∣.
- Distances to the ellipse:
Substitute x=a+rcosθ and y=2+rsinθ into the ellipse equation 9x2+4y2=1:
4(a+rcosθ)2+9(2+rsinθ)2=36 4(a2+2arcosθ+r2cos2θ)+9(4+4rsinθ+r2sin2θ)=36 4a2+8arcosθ+4r2cos2θ+36+36rsinθ+9r2sin2θ=36 r2(4cos2θ+9sin2θ)+r(8acosθ+36sinθ)+4a2=0
Let rA and rD be the roots of this quadratic equation. These are the signed distances from P to A and D. The product of the distances PA⋅PD=∣rArD∣=4cos2θ+9sin2θ4a2=4cos2θ+9sin2θ4a2.
- G.P. condition:
If PA, PB, PC, PD are in G.P., then PA⋅PD=PB⋅PC.
Substitute the expressions for the products: 4cos2θ+9sin2θ4a2=(∣sinθ∣2)(∣cosθ∣∣a∣)
If a=0, then P=(0,2). This point lies on the ellipse, so PA=0. For the distances to be in G.P., all terms must be zero. This would require PB=0, which means P is on the x-axis, which is false for P(0,2). Thus a=0.
Since a=0, we can divide by ∣a∣: 4cos2θ+9sin2θ4∣a∣=∣sinθcosθ∣2 2∣a∣∣sinθcosθ∣=4cos2θ+9sin2θ ∣a∣∣2sinθcosθ∣=4cos2θ+9sin2θ ∣a∣∣sin(2θ)∣=4cos2θ+9sin2θ
We can rewrite 4cos2θ+9sin2θ=4(1−sin2θ)+9sin2θ=4+5sin2θ. So, ∣a∣∣sin(2θ)∣=4+5sin2θ.
∣a∣=∣sin(2θ)∣4+5sin2θ
To find the possible values of ∣a∣, we need to find the range of the right-hand side.
Let s=sin2θ. Then ∣sin(2θ)∣=∣2sinθcosθ∣=∣2sinθ1−sin2θ∣=2s(1−s). ∣a∣=2s(1−s)4+5s
Square both sides: a2=4s(1−s)(4+5s)2 4a2s(1−s)=(4+5s)2 4a2s−4a2s2=16+40s+25s2 s2(25+4a2)+s(40−4a2)+16=0
For s to be a real value, the discriminant must be non-negative: D=(40−4a2)2−4(25+4a2)(16)≥0 (10−a2)2−4(25+4a2)≥0 100−20a2+a4−100−16a2≥0 a4−36a2≥0 a2(a2−36)≥0
Since a=0, a2>0. Therefore, we must have a2−36≥0, which implies a2≥36. So, ∣a∣≥6.
Any value of a such that ∣a∣≥6 is a possible value.