Solveeit Logo

Question

Question: Line \[\mathop r\limits^ \to {\text{ }} = \left( {{\text{ }}i{\text{ }} - {\text{ }}j{\text{ }} + {\...

Line r =( i  j + k ) + t ( 2i  j + k )\mathop r\limits^ \to {\text{ }} = \left( {{\text{ }}i{\text{ }} - {\text{ }}j{\text{ }} + {\text{ }}k{\text{ }}} \right){\text{ }} + {\text{ }}t{\text{ }}\left( {{\text{ }}2i{\text{ }} - {\text{ }}j{\text{ }} + {\text{ }}k{\text{ }}} \right) contained in a plane to which vector n = 3i  2j + λk\mathop n\limits^ \to {\text{ }} = {\text{ }}3i{\text{ }} - {\text{ }}2j{\text{ }} + {\text{ }}\lambda k is normal . Find the value of λ\lambda . Also find the vector equation of the plane .

Explanation

Solution

Hint : We have to find the value of λ\lambda and the vector equation of the plane . We solve this question using the concept of three dimensional geometry and vector algebra and we also use the concept of two vectors perpendicular to each other . We use the formula of two vectors perpendicular to each other to find the value of λ\lambda and then find the vector equation of the plane using the formula for the vector equations .

Complete step-by-step answer :
Given :
r = ( i  j + k ) + t ( 2i  j + k )\mathop r\limits^ \to {\text{ }} = {\text{ }}\left( {{\text{ }}i{\text{ }} - {\text{ }}j{\text{ }} + {\text{ }}k{\text{ }}} \right){\text{ }} + {\text{ }}t{\text{ }}\left( {{\text{ }}2i{\text{ }} - {\text{ }}j{\text{ }} + {\text{ }}k{\text{ }}} \right)
r = ( 2t + 1 ) i  ( t + 1 ) j + ( t + 1 ) k\mathop r\limits^ \to {\text{ }} = {\text{ }}\left( {{\text{ }}2t{\text{ }} + {\text{ }}1{\text{ }}} \right){\text{ }}i{\text{ }} - {\text{ }}\left( {{\text{ }}t{\text{ }} + {\text{ }}1{\text{ }}} \right){\text{ }}j{\text{ }} + {\text{ }}\left( {{\text{ }}t{\text{ }} + {\text{ }}1{\text{ }}} \right){\text{ }}k
n = 3i  2j + λk\mathop n\limits^ \to {\text{ }} = {\text{ }}3i{\text{ }} - {\text{ }}2j{\text{ }} + {\text{ }}\lambda k
As given , the line r = ( i  j + k ) + t ( 2i  j + k )\mathop r\limits^ \to {\text{ }} = {\text{ }}\left( {{\text{ }}i{\text{ }} - {\text{ }}j{\text{ }} + {\text{ }}k{\text{ }}} \right){\text{ }} + {\text{ }}t{\text{ }}\left( {{\text{ }}2i{\text{ }} - {\text{ }}j{\text{ }} + {\text{ }}k{\text{ }}} \right) is normal to n = 3i  2j + λk .\mathop n\limits^ \to {\text{ }} = {\text{ }}3i{\text{ }} - {\text{ }}2j{\text{ }} + {\text{ }}\lambda k{\text{ }}.
This means that r \mathop r\limits^ \to {\text{ }} and n \mathop n\limits^ \to {\text{ }} are perpendicular to each other .
We also know that the dot product to two vectors is zero if both the vectors are perpendicular .
So , we get
( 2i  j + k ) . ( 3i  2j + λk ) = 0\left( {{\text{ }}2i{\text{ }} - {\text{ }}j{\text{ }} + {\text{ }}k{\text{ }}} \right){\text{ }}.{\text{ }}\left( {{\text{ }}3i{\text{ }} - {\text{ }}2j{\text{ }} + {\text{ }}\lambda k{\text{ }}} \right){\text{ }} = {\text{ }}0
As , we know that
i . i = j . j = k . k = 1i{\text{ }}.{\text{ }}i{\text{ }} = {\text{ }}j{\text{ }}.{\text{ }}j{\text{ }} = {\text{ }}k{\text{ }}.{\text{ }}k{\text{ }} = {\text{ }}1 Also ,
i . j = i . k = j . k = 0
By multiplication of terms , we get
6 + 2 + λ = 06{\text{ }} + {\text{ }}2{\text{ }} + {\text{ }}\lambda {\text{ }} = {\text{ }}0
We get ,
λ = 8\lambda {\text{ }} = {\text{ }} - 8
The points that lies on the plane are ( 1 , 1 , 1 )\left( {{\text{ }}1{\text{ }},{\text{ }} - 1{\text{ }},{\text{ }}1{\text{ }}} \right)
Using this points , we get values of points as :
( x  1 ) , ( y + 1 ) , ( z  1 )\left( {{\text{ }}x{\text{ }} - {\text{ }}1{\text{ }}} \right){\text{ }},{\text{ }}\left( {{\text{ }}y{\text{ }} + {\text{ }}1{\text{ }}} \right){\text{ }},{\text{ }}\left( {{\text{ }}z{\text{ }} - {\text{ }}1{\text{ }}} \right)
Vector equation of plane is given as :
Putting these points in n\overrightarrow n , we get
3 ( x  1 )  2 ( y + 1 ) + λ ( z  1 ) = 03{\text{ }}\left( {{\text{ }}x{\text{ }} - {\text{ }}1{\text{ }}} \right){\text{ }} - {\text{ }}2{\text{ }}\left( {{\text{ }}y{\text{ }} + {\text{ }}1{\text{ }}} \right){\text{ }} + {\text{ }}\lambda {\text{ }}\left( {{\text{ }}z{\text{ }} - {\text{ }}1{\text{ }}} \right){\text{ }} = {\text{ }}0
putting the value of λ\lambda , we get
3 ( x  1 )  2 ( y + 1 )  8 ( z  1 ) = 03{\text{ }}\left( {{\text{ }}x{\text{ }} - {\text{ }}1{\text{ }}} \right){\text{ }} - {\text{ }}2{\text{ }}\left( {{\text{ }}y{\text{ }} + {\text{ }}1{\text{ }}} \right){\text{ }} - {\text{ }}8{\text{ }}\left( {{\text{ }}z{\text{ }} - {\text{ }}1{\text{ }}} \right){\text{ }} = {\text{ }}0
Expanding the terms , we get
3 x  2 y  8 z + 3 = 03{\text{ }}x{\text{ }} - {\text{ }}2{\text{ }}y{\text{ }} - {\text{ }}8{\text{ }}z{\text{ }} + {\text{ }}3{\text{ }} = {\text{ }}0
Thus , the value of λ\lambda is 8 - 8 and the vector equation of the plane is 3 x  2 y  8 z + 3 = 0 .3{\text{ }}x{\text{ }} - {\text{ }}2{\text{ }}y{\text{ }} - {\text{ }}8{\text{ }}z{\text{ }} + {\text{ }}3{\text{ }} = {\text{ }}0{\text{ }}.

Note : The scalar product of two given vectors a \mathop a\limits^ \to {\text{ }} and b \mathop b\limits^ \to {\text{ }} having angle θ\theta between them is defined as :
a . b = a b cos θ\mathop a\limits^ \to {\text{ }}.{\text{ }}\mathop b\limits^ \to {\text{ }} = {\text{ }}\left| a \right|{\text{ }}\left| b \right|{\text{ }}cos{\text{ }}\theta Also , when a . b \mathop a\limits^ \to {\text{ }}.{\text{ }}\mathop b\limits^ \to {\text{ }} is given , the angle ‘θ\theta ’ between the vectors a \mathop a\limits^ \to {\text{ }} and b \mathop b\limits^ \to {\text{ }}.