Solveeit Logo

Question

Question: The vector equation of plane containing the point (1, -1, 2) and perpendicular to planes 2x+3y-2z=5 ...

The vector equation of plane containing the point (1, -1, 2) and perpendicular to planes 2x+3y-2z=5 and x+2y-3z = 8 is

A

r(5i+4jk)=7\overrightarrow{r} \cdot (-5i+4j-k) = -7

B

r(5i+4jk)=7\overrightarrow{r} \cdot (-5i+4j-k) = 7

C

r(5i+4j+k)=7\overrightarrow{r} \cdot (-5i+4j+k) = -7

D

r(5i+4j+k)=7\overrightarrow{r} \cdot (-5i+4j+k) = 7

Answer

r(5i+4j+k)=7\overrightarrow{r} \cdot (-5i+4j+k) = -7

Explanation

Solution

Plane Equation:

  • Normals of given planes: n₁ = (2,3,–2), n₂ = (1,2,–3).
  • Required plane’s normal = n₁ × n₂ = (–5, 4, 1).
  • Using point (1,–1,2): (–5)(1)+4(–1)+1(2)= –7.
  • Equation: r(5i+4j+k)=7\overrightarrow{r} \cdot (-5i+4j+k)= –7