Solveeit Logo

Question

Question: The vector equation of plane containing the point (1, -1, 2) and perpendicular to planes 2x + 3y - 2...

The vector equation of plane containing the point (1, -1, 2) and perpendicular to planes 2x + 3y - 2z = 5 and x + 2y - 3z = 8 is

A

r.(5i+4jk)=7\overrightarrow{r}.(-5i + 4j - k) = -7

B

r.(5i+4j+k)=7\overrightarrow{r}.(-5i + 4j + k) = 7

C

r.(5i+4j+k)=7\overrightarrow{r}.(-5i + 4j + k) = -7

D

r.(5i+4j+k)=7\overrightarrow{r}.(-5i + 4j + k) = 7

Answer

r.(5i+4j+k)=7\overrightarrow{r}.(-5i + 4j + k) = -7

Explanation

Solution

The normal vectors of the given planes are n1=(2,3,2)\mathbf{n}_1 = (2, 3, -2) and n2=(1,2,3)\mathbf{n}_2 = (1, 2, -3). The normal vector to the required plane is the cross product of these two vectors:

n=n1×n2=ijk232123=(9+4)i(6+2)j+(43)k=5i+4j+k\mathbf{n} = \mathbf{n}_1 \times \mathbf{n}_2 = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 3 & -2 \\ 1 & 2 & -3 \end{vmatrix} = (-9 + 4)\mathbf{i} - (-6 + 2)\mathbf{j} + (4 - 3)\mathbf{k} = -5\mathbf{i} + 4\mathbf{j} + \mathbf{k}.

So, the normal vector is (5,4,1)(-5, 4, 1). The equation of the plane is given by r(5i+4j+k)=d\overrightarrow{r} \cdot (-5\mathbf{i} + 4\mathbf{j} + \mathbf{k}) = d. Since the plane contains the point (1, -1, 2), we have:

d=5(1)+4(1)+1(2)=54+2=7d = -5(1) + 4(-1) + 1(2) = -5 - 4 + 2 = -7.

Thus, the equation of the plane is r(5i+4j+k)=7\overrightarrow{r} \cdot (-5\mathbf{i} + 4\mathbf{j} + \mathbf{k}) = -7.