Solveeit Logo

Question

Question: The co-ordinates of the foot of the perpendicular drawn from the origin to the 2x + y - 2z = 18 are...

The co-ordinates of the foot of the perpendicular drawn from the origin to the 2x + y - 2z = 18 are

A

(4,2,-4)

B

(1,2,-3)

C

(4,2,4)

D

(4,-2,-4)

Answer

(4,2,-4)

Explanation

Solution

To find the foot of the perpendicular from the origin to the plane 2x+y2z=182x + y - 2z = 18, we use the formula for the foot of the perpendicular from a point P(x1,y1,z1)P(x_1, y_1, z_1) to a plane ax+by+cz+d=0ax + by + cz + d = 0, which is given by:

F=(x1a(ax1+by1+cz1+d)a2+b2+c2,y1b(ax1+by1+cz1+d)a2+b2+c2,z1c(ax1+by1+cz1+d)a2+b2+c2)F = \left(x_1 - \frac{a(ax_1+by_1+cz_1+d)}{a^2+b^2+c^2}, y_1 - \frac{b(ax_1+by_1+cz_1+d)}{a^2+b^2+c^2}, z_1 - \frac{c(ax_1+by_1+cz_1+d)}{a^2+b^2+c^2}\right)

In this case, P=(0,0,0)P = (0, 0, 0), a=2a = 2, b=1b = 1, c=2c = -2, and d=18d = -18. Plugging these values into the formula, we get:

ax1+by1+cz1+d=2(0)+1(0)2(0)18=18ax_1 + by_1 + cz_1 + d = 2(0) + 1(0) - 2(0) - 18 = -18 a2+b2+c2=22+12+(2)2=4+1+4=9a^2 + b^2 + c^2 = 2^2 + 1^2 + (-2)^2 = 4 + 1 + 4 = 9

Therefore, the foot of the perpendicular FF is:

F=(02(18)9,01(18)9,02(18)9)=(369,189,369)=(4,2,4)F = \left(0 - \frac{2(-18)}{9}, 0 - \frac{1(-18)}{9}, 0 - \frac{-2(-18)}{9}\right) = \left(\frac{36}{9}, \frac{18}{9}, -\frac{36}{9}\right) = (4, 2, -4)

Thus, the coordinates of the foot of the perpendicular are (4,2,4)(4, 2, -4).