Solveeit Logo

Question

Question: $\lim_{x\to\infty}\frac{d}{dx}\left(\frac{8x^2+bx+c}{4x+f}\right)=2m$, then $\lim_{x\to m^+}2^{\frac...

limxddx(8x2+bx+c4x+f)=2m\lim_{x\to\infty}\frac{d}{dx}\left(\frac{8x^2+bx+c}{4x+f}\right)=2m, then limxm+212(1x)=\lim_{x\to m^+}2^{\frac{1}{2(1-x)}}=

Answer

0

Explanation

Solution

First, we need to evaluate the derivative of the function y=8x2+bx+c4x+fy = \frac{8x^2+bx+c}{4x+f} with respect to xx.

Using the quotient rule, ddx(uv)=uvuvv2\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{u'v - uv'}{v^2}, where u=8x2+bx+cu = 8x^2+bx+c and v=4x+fv = 4x+f.

u=16x+bu' = 16x+b and v=4v' = 4.

ddx(8x2+bx+c4x+f)=(16x+b)(4x+f)(8x2+bx+c)(4)(4x+f)2\frac{d}{dx}\left(\frac{8x^2+bx+c}{4x+f}\right) = \frac{(16x+b)(4x+f) - (8x^2+bx+c)(4)}{(4x+f)^2}

Expanding the numerator:

(16x+b)(4x+f)4(8x2+bx+c)=(64x2+16xf+4bx+bf)(32x2+4bx+4c)(16x+b)(4x+f) - 4(8x^2+bx+c) = (64x^2 + 16xf + 4bx + bf) - (32x^2 + 4bx + 4c)

=64x2+16xf+4bx+bf32x24bx4c= 64x^2 + 16xf + 4bx + bf - 32x^2 - 4bx - 4c

=32x2+16xf+bf4c= 32x^2 + 16xf + bf - 4c

The derivative is:

ddx(8x2+bx+c4x+f)=32x2+16xf+bf4c(4x+f)2=32x2+16xf+bf4c16x2+8xf+f2\frac{d}{dx}\left(\frac{8x^2+bx+c}{4x+f}\right) = \frac{32x^2 + 16xf + bf - 4c}{(4x+f)^2} = \frac{32x^2 + 16xf + bf - 4c}{16x^2 + 8xf + f^2}

Next, we evaluate the limit of this derivative as xx\to\infty.

limx32x2+16xf+bf4c16x2+8xf+f2\lim_{x\to\infty}\frac{32x^2 + 16xf + bf - 4c}{16x^2 + 8xf + f^2}

This is the limit of a rational function where the degree of the numerator and the denominator are equal (both are 2). The limit as xx\to\infty is the ratio of the leading coefficients.

limx32x2+16xf+bf4c16x2+8xf+f2=3216=2\lim_{x\to\infty}\frac{32x^2 + 16xf + bf - 4c}{16x^2 + 8xf + f^2} = \frac{32}{16} = 2

The problem states that this limit is equal to 2m2m.

2m=22m = 2

Dividing by 2, we get m=1m=1.

Now we need to evaluate the second limit: limxm+212(1x)\lim_{x\to m^+}2^{\frac{1}{2(1-x)}}.

Substitute m=1m=1:

limx1+212(1x)\lim_{x\to 1^+}2^{\frac{1}{2(1-x)}}

Let's analyze the exponent 12(1x)\frac{1}{2(1-x)} as x1+x \to 1^+.

As x1x \to 1 from the right side (x>1x > 1), the term (1x)(1-x) approaches 0 from the negative side (1x<01-x < 0).

Let x=1+hx = 1+h, where h0+h \to 0^+.

Then 1x=1(1+h)=h1-x = 1-(1+h) = -h.

The exponent becomes 12(h)=12h\frac{1}{2(-h)} = -\frac{1}{2h}.

As h0+h \to 0^+, 2h0+2h \to 0^+, so 12h+\frac{1}{2h} \to +\infty.

Therefore, 12h-\frac{1}{2h} \to -\infty.

The limit becomes:

limh0+212h=2\lim_{h\to 0^+} 2^{-\frac{1}{2h}} = 2^{-\infty}

We know that 2=12=1=02^{-\infty} = \frac{1}{2^\infty} = \frac{1}{\infty} = 0.

So, limx1+212(1x)=0\lim_{x\to 1^+}2^{\frac{1}{2(1-x)}} = 0.