Question
Question: $\lim_{x\to\infty}(2^x+3^x)^{1/x}$...
limx→∞(2x+3x)1/x

Answer
3
Explanation
Solution
The limit is of the indeterminate form ∞0.
Let L=limx→∞(2x+3x)1/x.
Consider lnL=limx→∞xln(2x+3x).
Factor out the dominant term 3x: ln(2x+3x)=ln(3x((32)x+1))=xln3+ln((32)x+1).
So, lnL=limx→∞xxln3+ln((32)x+1)=limx→∞(ln3+xln((32)x+1)).
As x→∞, (32)x→0, so ln((32)x+1)→ln(1)=0.
Thus, limx→∞xln((32)x+1)=∞0=0.
lnL=ln3+0=ln3.
L=eln3=3.