Solveeit Logo

Question

Question: $\lim_{x\to\infty}(2^x+3^x)^{1/x}$...

limx(2x+3x)1/x\lim_{x\to\infty}(2^x+3^x)^{1/x}

Answer

3

Explanation

Solution

The limit is of the indeterminate form 0\infty^0.

Let L=limx(2x+3x)1/xL = \lim_{x\to\infty}(2^x+3^x)^{1/x}.

Consider lnL=limxln(2x+3x)x\ln L = \lim_{x\to\infty} \frac{\ln(2^x+3^x)}{x}.

Factor out the dominant term 3x3^x: ln(2x+3x)=ln(3x((23)x+1))=xln3+ln((23)x+1)\ln(2^x+3^x) = \ln(3^x((\frac{2}{3})^x+1)) = x \ln 3 + \ln((\frac{2}{3})^x+1).

So, lnL=limxxln3+ln((23)x+1)x=limx(ln3+ln((23)x+1)x)\ln L = \lim_{x\to\infty} \frac{x \ln 3 + \ln((\frac{2}{3})^x+1)}{x} = \lim_{x\to\infty} (\ln 3 + \frac{\ln((\frac{2}{3})^x+1)}{x}).

As xx \to \infty, (23)x0(\frac{2}{3})^x \to 0, so ln((23)x+1)ln(1)=0\ln((\frac{2}{3})^x+1) \to \ln(1) = 0.

Thus, limxln((23)x+1)x=0=0\lim_{x\to\infty} \frac{\ln((\frac{2}{3})^x+1)}{x} = \frac{0}{\infty} = 0.

lnL=ln3+0=ln3\ln L = \ln 3 + 0 = \ln 3.

L=eln3=3L = e^{\ln 3} = 3.