Solveeit Logo

Question

Question: $\lim_{x\to\infty} \left( \sqrt{x^2-\frac{4x}{3}} + x + 2 \right)$ is equal to-...

limx(x24x3+x+2)\lim_{x\to\infty} \left( \sqrt{x^2-\frac{4x}{3}} + x + 2 \right) is equal to-

A

-4/3

B

4/3

C

2/3

D

-2/3

Answer

The limit as x approaches infinity is infinity. However, given the options, it's highly probable there's a typo in the question, and it should be a subtraction. If the question was limx(x24x3x+2)\lim_{x\to\infty} \left( \sqrt{x^2-\frac{4x}{3}} - x + 2 \right), the answer would be 4/3.

Explanation

Solution

The given limit is limx(x24x3+x+2)\lim_{x\to\infty} \left( \sqrt{x^2-\frac{4x}{3}} + x + 2 \right). As xx \to \infty, x24x3x2=x\sqrt{x^2-\frac{4x}{3}} \approx \sqrt{x^2} = x. Thus, the expression approaches x+x+2=2x+2x + x + 2 = 2x + 2. As xx \to \infty, 2x+22x+2 \to \infty. This indicates that the limit is infinity.

However, since the options are finite numerical values, it is highly probable that there is a typo in the question and the expression should have been x24x3x+2\sqrt{x^2-\frac{4x}{3}} - x + 2.

Assuming the question intended to be limx(x24x3x+2)\lim_{x\to\infty} \left( \sqrt{x^2-\frac{4x}{3}} - x + 2 \right):

  1. Consider the indeterminate form limx(x24x3x)\lim_{x\to\infty} \left( \sqrt{x^2-\frac{4x}{3}} - x \right).

  2. Rationalize the expression by multiplying and dividing by the conjugate (x24x3+x)\left(\sqrt{x^2-\frac{4x}{3}} + x\right):

    limx(x24x3x)(x24x3+x)x24x3+x\lim_{x\to\infty} \frac{\left(\sqrt{x^2-\frac{4x}{3}} - x\right)\left(\sqrt{x^2-\frac{4x}{3}} + x\right)}{\sqrt{x^2-\frac{4x}{3}} + x} =limx(x24x3)x2x24x3+x=limx4x3x24x3+x= \lim_{x\to\infty} \frac{(x^2-\frac{4x}{3}) - x^2}{\sqrt{x^2-\frac{4x}{3}} + x} = \lim_{x\to\infty} \frac{-\frac{4x}{3}}{\sqrt{x^2-\frac{4x}{3}} + x}
  3. Factor out xx from the denominator:

    =limx4x3x2(143x)+x=limx4x3x143x+x(since x>0 for x)= \lim_{x\to\infty} \frac{-\frac{4x}{3}}{\sqrt{x^2(1-\frac{4}{3x})} + x} = \lim_{x\to\infty} \frac{-\frac{4x}{3}}{x\sqrt{1-\frac{4}{3x}} + x} \quad (\text{since } x>0 \text{ for } x \to \infty) =limx4x3x(143x+1)=limx43143x+1= \lim_{x\to\infty} \frac{-\frac{4x}{3}}{x\left(\sqrt{1-\frac{4}{3x}} + 1\right)} = \lim_{x\to\infty} \frac{-\frac{4}{3}}{\sqrt{1-\frac{4}{3x}} + 1}
  4. As xx \to \infty, 43x0\frac{4}{3x} \to 0. So, 143x10=1\sqrt{1-\frac{4}{3x}} \to \sqrt{1-0} = 1.

    =431+1=432=23= \frac{-\frac{4}{3}}{1 + 1} = \frac{-\frac{4}{3}}{2} = -\frac{2}{3}
  5. Now add the constant term +2+2 from the original (modified) expression:

    limx(x24x3x+2)=23+2=2+63=43\lim_{x\to\infty} \left( \sqrt{x^2-\frac{4x}{3}} - x + 2 \right) = -\frac{2}{3} + 2 = \frac{-2+6}{3} = \frac{4}{3}