Question
Question: $\lim_{x\to\frac{\pi}{4}}\frac{\tan x-1}{\cos 2x}$ is equal to...
limx→4πcos2xtanx−1 is equal to

-1
Solution
The limit to be evaluated is limx→4πcos2xtanx−1.
Substituting x=4π into the expression, we get:
Numerator: tan(4π)−1=1−1=0.
Denominator: cos(2×4π)=cos(2π)=0.
The limit is of the indeterminate form 00. We can use L'Hopital's Rule or algebraic manipulation.
Method 1: Using L'Hopital's Rule
Let f(x)=tanx−1 and g(x)=cos2x.
Then f′(x)=dxd(tanx−1)=sec2x.
And g′(x)=dxd(cos2x)=−sin(2x)⋅dxd(2x)=−2sin(2x).
Applying L'Hopital's Rule, the limit is:
limx→4πg′(x)f′(x)=limx→4π−2sin(2x)sec2x.
Now, substitute x=4π into this new expression:
−2sin(2×4π)sec2(4π)=−2sin(2π)(cos(4π)1)2=−2(1)(1/21)2=−2(2)2=−22=−1.
Method 2: Using algebraic manipulation
We can rewrite the expression using trigonometric identities.
cos2xtanx−1=cos2x−sin2xcosxsinx−1=(cosx−sinx)(cosx+sinx)cosxsinx−cosx.
We can factor out −1 from the numerator term (sinx−cosx) to get −(cosx−sinx).
So the expression becomes:
cosx(cosx−sinx)(cosx+sinx)−(cosx−sinx).
For x=4π, cosx−sinx=0, so we can cancel the term (cosx−sinx) from the numerator and the denominator:
cosx(cosx+sinx)−1.
Now, evaluate the limit as x→4π:
limx→4πcosx(cosx+sinx)−1.
Substitute x=4π:
cos(4π)=21
sin(4π)=21
The denominator becomes cos(4π)(cos(4π)+sin(4π))=21(21+21)=21(22)=21(2)=1.
The limit is 1−1=−1.
Both methods yield the same result.