Solveeit Logo

Question

Question: $\lim_{x\to\frac{\pi}{4}}\frac{\tan x-1}{\cos 2x}$ is equal to...

limxπ4tanx1cos2x\lim_{x\to\frac{\pi}{4}}\frac{\tan x-1}{\cos 2x} is equal to

Answer

-1

Explanation

Solution

The limit to be evaluated is limxπ4tanx1cos2x\lim_{x\to\frac{\pi}{4}}\frac{\tan x-1}{\cos 2x}.

Substituting x=π4x = \frac{\pi}{4} into the expression, we get:

Numerator: tan(π4)1=11=0\tan(\frac{\pi}{4}) - 1 = 1 - 1 = 0.

Denominator: cos(2×π4)=cos(π2)=0\cos(2 \times \frac{\pi}{4}) = \cos(\frac{\pi}{2}) = 0.

The limit is of the indeterminate form 00\frac{0}{0}. We can use L'Hopital's Rule or algebraic manipulation.

Method 1: Using L'Hopital's Rule

Let f(x)=tanx1f(x) = \tan x - 1 and g(x)=cos2xg(x) = \cos 2x.

Then f(x)=ddx(tanx1)=sec2xf'(x) = \frac{d}{dx}(\tan x - 1) = \sec^2 x.

And g(x)=ddx(cos2x)=sin(2x)ddx(2x)=2sin(2x)g'(x) = \frac{d}{dx}(\cos 2x) = -\sin(2x) \cdot \frac{d}{dx}(2x) = -2\sin(2x).

Applying L'Hopital's Rule, the limit is:

limxπ4f(x)g(x)=limxπ4sec2x2sin(2x)\lim_{x\to\frac{\pi}{4}}\frac{f'(x)}{g'(x)} = \lim_{x\to\frac{\pi}{4}}\frac{\sec^2 x}{-2\sin(2x)}.

Now, substitute x=π4x = \frac{\pi}{4} into this new expression:

sec2(π4)2sin(2×π4)=(1cos(π4))22sin(π2)=(11/2)22(1)=(2)22=22=1\frac{\sec^2(\frac{\pi}{4})}{-2\sin(2 \times \frac{\pi}{4})} = \frac{(\frac{1}{\cos(\frac{\pi}{4})})^2}{-2\sin(\frac{\pi}{2})} = \frac{(\frac{1}{1/\sqrt{2}})^2}{-2(1)} = \frac{(\sqrt{2})^2}{-2} = \frac{2}{-2} = -1.

Method 2: Using algebraic manipulation

We can rewrite the expression using trigonometric identities.

tanx1cos2x=sinxcosx1cos2xsin2x=sinxcosxcosx(cosxsinx)(cosx+sinx)\frac{\tan x-1}{\cos 2x} = \frac{\frac{\sin x}{\cos x}-1}{\cos^2 x - \sin^2 x} = \frac{\frac{\sin x - \cos x}{\cos x}}{(\cos x - \sin x)(\cos x + \sin x)}.

We can factor out 1-1 from the numerator term (sinxcosx)(\sin x - \cos x) to get (cosxsinx)-(\cos x - \sin x).

So the expression becomes:

(cosxsinx)cosx(cosxsinx)(cosx+sinx)\frac{-(\cos x - \sin x)}{\cos x (\cos x - \sin x)(\cos x + \sin x)}.

For xπ4x \neq \frac{\pi}{4}, cosxsinx0\cos x - \sin x \neq 0, so we can cancel the term (cosxsinx)(\cos x - \sin x) from the numerator and the denominator:

1cosx(cosx+sinx)\frac{-1}{\cos x (\cos x + \sin x)}.

Now, evaluate the limit as xπ4x \to \frac{\pi}{4}:

limxπ41cosx(cosx+sinx)\lim_{x\to\frac{\pi}{4}}\frac{-1}{\cos x (\cos x + \sin x)}.

Substitute x=π4x = \frac{\pi}{4}:

cos(π4)=12\cos(\frac{\pi}{4}) = \frac{1}{\sqrt{2}}

sin(π4)=12\sin(\frac{\pi}{4}) = \frac{1}{\sqrt{2}}

The denominator becomes cos(π4)(cos(π4)+sin(π4))=12(12+12)=12(22)=12(2)=1\cos(\frac{\pi}{4}) (\cos(\frac{\pi}{4}) + \sin(\frac{\pi}{4})) = \frac{1}{\sqrt{2}} (\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}) = \frac{1}{\sqrt{2}} (\frac{2}{\sqrt{2}}) = \frac{1}{\sqrt{2}} (\sqrt{2}) = 1.

The limit is 11=1\frac{-1}{1} = -1.

Both methods yield the same result.