Solveeit Logo

Question

Question: $\lim_{x\to0}\frac{(729)^x-(243)^x-(81)^x+9^x+3^x-1}{x^3}$...

limx0(729)x(243)x(81)x+9x+3x1x3\lim_{x\to0}\frac{(729)^x-(243)^x-(81)^x+9^x+3^x-1}{x^3}

Answer

6(\ln 3)^3

Explanation

Solution

The limit expression can be rewritten using ax=exlnaa^x = e^{x \ln a}. Let k=ln3k = \ln 3. The limit becomes limx0e6kxe5kxe4kx+e2kx+ekx1x3\lim_{x\to0}\frac{e^{6kx}-e^{5kx}-e^{4kx}+e^{2kx}+e^{kx}-1}{x^3}. This limit can be evaluated using the Taylor expansion of eu=1+u+u22!+u33!+e^u = 1 + u + \frac{u^2}{2!} + \frac{u^3}{3!} + \dots for each term. Upon expansion and collecting terms, the coefficients of xx and x2x^2 in the numerator are found to be zero, while the coefficient of x3x^3 is 6k36k^3. Thus, the limit is limx06k3x3x3=6k3\lim_{x\to0}\frac{6k^3x^3}{x^3} = 6k^3. Substituting k=ln3k=\ln 3 gives the result 6(ln3)36(\ln 3)^3. Alternatively, recognizing the limit as f(0)3!\frac{f'''(0)}{3!} for f(x)=(729)x(243)x(81)x+9x+3x1f(x) = (729)^x-(243)^x-(81)^x+9^x+3^x-1 and calculating the third derivative at x=0x=0 also yields 36(ln3)336(\ln 3)^3, leading to the limit 36(ln3)36=6(ln3)3\frac{36(\ln 3)^3}{6} = 6(\ln 3)^3. A third method involves substituting a=3xa=3^x and factoring the numerator as (a1)3(a+1)(a2+a+1)(a-1)^3(a+1)(a^2+a+1), then using x=lnaln3x = \frac{\ln a}{\ln 3} and the standard limit lima1a1lna=1\lim_{a\to1}\frac{a-1}{\ln a}=1 to get 6(ln3)36(\ln 3)^3.