Question
Question: $\lim_{x\to0} \frac{x\cot(4x)}{\sin^2x \cot^2(2x)}$ is equal to:...
limx→0sin2xcot2(2x)xcot(4x) is equal to:

1
4
0
2
1
Solution
To evaluate the limit limx→0sin2xcot2(2x)xcot(4x), we first rewrite the cotangent terms in terms of tangent, as cotθ=tanθ1.
The expression becomes: limx→0sin2x⋅tan2(2x)1x⋅tan(4x)1 Simplify the expression: limx→0sin2xtan(4x)xtan2(2x) Now, we use the standard limits: limθ→0θsinθ=1andlimθ→0θtanθ=1 To apply these limits, we multiply and divide each trigonometric term by its argument.
Let's rewrite the numerator and the denominator:
Numerator: xtan2(2x) xtan2(2x)=x⋅(2xtan(2x)⋅2x)2 =x⋅(2xtan(2x))2⋅(2x)2 =x⋅(2xtan(2x))2⋅4x2 =4x3(2xtan(2x))2
Denominator: sin2xtan(4x) sin2xtan(4x)=(xsinx⋅x)2⋅(4xtan(4x)⋅4x) =(xsinx)2⋅x2⋅(4xtan(4x))⋅4x =4x3(xsinx)2(4xtan(4x))
Now substitute these modified terms back into the limit expression: limx→04x3(xsinx)2(4xtan(4x))4x3(2xtan(2x))2 Cancel out the common term 4x3: limx→0(xsinx)2(4xtan(4x))(2xtan(2x))2 Now, apply the limits as x→0: limx→02xtan(2x)=1 limx→0xsinx=1 limx→04xtan(4x)=1 Substitute these values into the expression: (1)2⋅(1)(1)2=1⋅11=1
Thus, the limit is 1.