Solveeit Logo

Question

Question: $\lim_{x\to0} \frac{x\cot(4x)}{\sin^2x \cot^2(2x)}$ is equal to:...

limx0xcot(4x)sin2xcot2(2x)\lim_{x\to0} \frac{x\cot(4x)}{\sin^2x \cot^2(2x)} is equal to:

A

1

B

4

C

0

D

2

Answer

1

Explanation

Solution

To evaluate the limit limx0xcot(4x)sin2xcot2(2x)\lim_{x\to0} \frac{x\cot(4x)}{\sin^2x \cot^2(2x)}, we first rewrite the cotangent terms in terms of tangent, as cotθ=1tanθ\cot \theta = \frac{1}{\tan \theta}.

The expression becomes: limx0x1tan(4x)sin2x1tan2(2x)\lim_{x\to0} \frac{x \cdot \frac{1}{\tan(4x)}}{\sin^2x \cdot \frac{1}{\tan^2(2x)}} Simplify the expression: limx0xtan2(2x)sin2xtan(4x)\lim_{x\to0} \frac{x \tan^2(2x)}{\sin^2x \tan(4x)} Now, we use the standard limits: limθ0sinθθ=1andlimθ0tanθθ=1\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1 \quad \text{and} \quad \lim_{\theta \to 0} \frac{\tan \theta}{\theta} = 1 To apply these limits, we multiply and divide each trigonometric term by its argument.

Let's rewrite the numerator and the denominator:

Numerator: xtan2(2x)x \tan^2(2x) xtan2(2x)=x(tan(2x)2x2x)2x \tan^2(2x) = x \cdot \left(\frac{\tan(2x)}{2x} \cdot 2x\right)^2 =x(tan(2x)2x)2(2x)2= x \cdot \left(\frac{\tan(2x)}{2x}\right)^2 \cdot (2x)^2 =x(tan(2x)2x)24x2= x \cdot \left(\frac{\tan(2x)}{2x}\right)^2 \cdot 4x^2 =4x3(tan(2x)2x)2= 4x^3 \left(\frac{\tan(2x)}{2x}\right)^2

Denominator: sin2xtan(4x)\sin^2x \tan(4x) sin2xtan(4x)=(sinxxx)2(tan(4x)4x4x)\sin^2x \tan(4x) = \left(\frac{\sin x}{x} \cdot x\right)^2 \cdot \left(\frac{\tan(4x)}{4x} \cdot 4x\right) =(sinxx)2x2(tan(4x)4x)4x= \left(\frac{\sin x}{x}\right)^2 \cdot x^2 \cdot \left(\frac{\tan(4x)}{4x}\right) \cdot 4x =4x3(sinxx)2(tan(4x)4x)= 4x^3 \left(\frac{\sin x}{x}\right)^2 \left(\frac{\tan(4x)}{4x}\right)

Now substitute these modified terms back into the limit expression: limx04x3(tan(2x)2x)24x3(sinxx)2(tan(4x)4x)\lim_{x\to0} \frac{4x^3 \left(\frac{\tan(2x)}{2x}\right)^2}{4x^3 \left(\frac{\sin x}{x}\right)^2 \left(\frac{\tan(4x)}{4x}\right)} Cancel out the common term 4x34x^3: limx0(tan(2x)2x)2(sinxx)2(tan(4x)4x)\lim_{x\to0} \frac{\left(\frac{\tan(2x)}{2x}\right)^2}{\left(\frac{\sin x}{x}\right)^2 \left(\frac{\tan(4x)}{4x}\right)} Now, apply the limits as x0x \to 0: limx0tan(2x)2x=1\lim_{x\to0} \frac{\tan(2x)}{2x} = 1 limx0sinxx=1\lim_{x\to0} \frac{\sin x}{x} = 1 limx0tan(4x)4x=1\lim_{x\to0} \frac{\tan(4x)}{4x} = 1 Substitute these values into the expression: (1)2(1)2(1)=111=1\frac{(1)^2}{(1)^2 \cdot (1)} = \frac{1}{1 \cdot 1} = 1

Thus, the limit is 1.