Solveeit Logo

Question

Question: $\lim_{x\to0} \frac{\int_{0}^{x^2} \cos t^2 dt}{x \sin x}$ is equal to...

limx00x2cost2dtxsinx\lim_{x\to0} \frac{\int_{0}^{x^2} \cos t^2 dt}{x \sin x} is equal to

Answer

1

Explanation

Solution

The given limit is limx00x2cost2dtxsinx\lim_{x\to0} \frac{\int_{0}^{x^2} \cos t^2 dt}{x \sin x}.

Step 1: Check the form of the limit. As x0x \to 0: Numerator: 0x2cost2dt00cost2dt=0\int_{0}^{x^2} \cos t^2 dt \to \int_{0}^{0} \cos t^2 dt = 0. Denominator: xsinx0sin0=00=0x \sin x \to 0 \cdot \sin 0 = 0 \cdot 0 = 0. The limit is of the indeterminate form 00\frac{0}{0}. Therefore, we can apply L'Hopital's Rule.

Step 2: Apply L'Hopital's Rule for the first time. Let N(x)=0x2cost2dtN(x) = \int_{0}^{x^2} \cos t^2 dt and D(x)=xsinxD(x) = x \sin x. We need to find N(x)N'(x) and D(x)D'(x).

For N(x)N'(x), we use the Leibniz integral rule: ddxa(x)b(x)h(t)dt=h(b(x))b(x)h(a(x))a(x)\frac{d}{dx} \int_{a(x)}^{b(x)} h(t) dt = h(b(x)) b'(x) - h(a(x)) a'(x). Here, h(t)=cost2h(t) = \cos t^2, a(x)=0a(x) = 0, and b(x)=x2b(x) = x^2. N(x)=cos((x2)2)ddx(x2)cos(02)ddx(0)N'(x) = \cos((x^2)^2) \cdot \frac{d}{dx}(x^2) - \cos(0^2) \cdot \frac{d}{dx}(0) N(x)=cos(x4)(2x)cos(0)0N'(x) = \cos(x^4) \cdot (2x) - \cos(0) \cdot 0 N(x)=2xcos(x4)N'(x) = 2x \cos(x^4)

For D(x)D'(x), we use the product rule: ddx(uv)=uv+uv\frac{d}{dx}(uv) = u'v + uv'. D(x)=ddx(xsinx)=(1)sinx+x(cosx)D'(x) = \frac{d}{dx}(x \sin x) = (1)\sin x + x(\cos x) D(x)=sinx+xcosxD'(x) = \sin x + x \cos x

Applying L'Hopital's Rule, the limit becomes: limx02xcos(x4)sinx+xcosx\lim_{x\to0} \frac{2x \cos(x^4)}{\sin x + x \cos x}

Step 3: Check the form of the new limit. As x0x \to 0: Numerator: 2(0)cos(04)=01=02(0) \cos(0^4) = 0 \cdot 1 = 0. Denominator: sin0+0cos0=0+0=0\sin 0 + 0 \cos 0 = 0 + 0 = 0. The limit is still of the indeterminate form 00\frac{0}{0}. So, we apply L'Hopital's Rule again.

Step 4: Apply L'Hopital's Rule for the second time. Let N1(x)=2xcos(x4)N_1(x) = 2x \cos(x^4) and D1(x)=sinx+xcosxD_1(x) = \sin x + x \cos x. We need to find N1(x)N_1'(x) and D1(x)D_1'(x).

For N1(x)N_1'(x), use the product rule: N1(x)=ddx(2xcos(x4))=2cos(x4)+2x(sin(x4)ddx(x4))N_1'(x) = \frac{d}{dx}(2x \cos(x^4)) = 2 \cdot \cos(x^4) + 2x \cdot (-\sin(x^4) \cdot \frac{d}{dx}(x^4)) N1(x)=2cos(x4)2xsin(x4)(4x3)N_1'(x) = 2 \cos(x^4) - 2x \sin(x^4) \cdot (4x^3) N1(x)=2cos(x4)8x4sin(x4)N_1'(x) = 2 \cos(x^4) - 8x^4 \sin(x^4)

For D1(x)D_1'(x): D1(x)=ddx(sinx+xcosx)=cosx+(1cosx+x(sinx))D_1'(x) = \frac{d}{dx}(\sin x + x \cos x) = \cos x + (1 \cdot \cos x + x \cdot (-\sin x)) D1(x)=cosx+cosxxsinxD_1'(x) = \cos x + \cos x - x \sin x D1(x)=2cosxxsinxD_1'(x) = 2 \cos x - x \sin x

Applying L'Hopital's Rule again, the limit becomes: limx02cos(x4)8x4sin(x4)2cosxxsinx\lim_{x\to0} \frac{2 \cos(x^4) - 8x^4 \sin(x^4)}{2 \cos x - x \sin x}

Step 5: Evaluate the final limit. As x0x \to 0: Numerator: 2cos(04)8(0)4sin(04)=2cos(0)0=2(1)0=22 \cos(0^4) - 8(0)^4 \sin(0^4) = 2 \cos(0) - 0 = 2(1) - 0 = 2. Denominator: 2cos00sin0=2(1)0=22 \cos 0 - 0 \sin 0 = 2(1) - 0 = 2. The limit evaluates to 22=1\frac{2}{2} = 1.

The final answer is 1\boxed{1}.

Explanation of the solution: The limit is of the form 00\frac{0}{0}. Apply L'Hopital's Rule twice.

  1. Differentiate the numerator using Leibniz rule: ddx0x2cost2dt=2xcos(x4)\frac{d}{dx} \int_{0}^{x^2} \cos t^2 dt = 2x \cos(x^4).
  2. Differentiate the denominator using product rule: ddx(xsinx)=sinx+xcosx\frac{d}{dx} (x \sin x) = \sin x + x \cos x. The limit becomes limx02xcos(x4)sinx+xcosx\lim_{x\to0} \frac{2x \cos(x^4)}{\sin x + x \cos x}, which is still 00\frac{0}{0}.
  3. Differentiate the new numerator: ddx(2xcos(x4))=2cos(x4)8x4sin(x4)\frac{d}{dx} (2x \cos(x^4)) = 2 \cos(x^4) - 8x^4 \sin(x^4).
  4. Differentiate the new denominator: ddx(sinx+xcosx)=2cosxxsinx\frac{d}{dx} (\sin x + x \cos x) = 2 \cos x - x \sin x. The limit becomes limx02cos(x4)8x4sin(x4)2cosxxsinx\lim_{x\to0} \frac{2 \cos(x^4) - 8x^4 \sin(x^4)}{2 \cos x - x \sin x}.
  5. Substitute x=0x=0: 2cos(0)02cos(0)0=22=1\frac{2 \cos(0) - 0}{2 \cos(0) - 0} = \frac{2}{2} = 1.