Solveeit Logo

Question

Question: $\lim_{x\to 1}\frac{\sqrt[n]{x}-1}{\sqrt[m]{x}-1}$(m and n integers) is equal to:...

limx1xn1xm1\lim_{x\to 1}\frac{\sqrt[n]{x}-1}{\sqrt[m]{x}-1}(m and n integers) is equal to:

A

0

B

1

C

mn\frac{m}{n}

D

nm\frac{n}{m}

Answer

mn\frac{m}{n}

Explanation

Solution

The problem requires evaluating the limit:

limx1xn1xm1\lim_{x\to 1}\frac{\sqrt[n]{x}-1}{\sqrt[m]{x}-1}

where mm and nn are integers.

Substituting x=1x=1 yields the indeterminate form 00\frac{0}{0}, allowing us to use L'Hopital's Rule.

Applying L'Hopital's Rule:

Let f(x)=x1/n1f(x) = x^{1/n} - 1 and g(x)=x1/m1g(x) = x^{1/m} - 1. Then:

f(x)=1nx1n1f'(x) = \frac{1}{n}x^{\frac{1}{n}-1}

g(x)=1mx1m1g'(x) = \frac{1}{m}x^{\frac{1}{m}-1}

Thus,

limx1f(x)g(x)=limx11nx1n11mx1m1=limx1mnx1n1m\lim_{x\to 1}\frac{f'(x)}{g'(x)} = \lim_{x\to 1}\frac{\frac{1}{n}x^{\frac{1}{n}-1}}{\frac{1}{m}x^{\frac{1}{m}-1}} = \lim_{x\to 1}\frac{m}{n}x^{\frac{1}{n}-\frac{1}{m}}

Substituting x=1x=1:

mn(1)1n1m=mn\frac{m}{n}(1)^{\frac{1}{n}-\frac{1}{m}} = \frac{m}{n}

Alternative Method: Using Standard Limit Formula

Rewrite the limit by dividing both numerator and denominator by (x1)(x-1):

limx1x1/n1x1x1/m1x1\lim_{x\to 1}\frac{\frac{x^{1/n}-1}{x-1}}{\frac{x^{1/m}-1}{x-1}}

Using the standard limit formula limxaxpapxa=pap1\lim_{x\to a}\frac{x^p - a^p}{x-a} = pa^{p-1}:

Numerator limit: 1n\frac{1}{n}

Denominator limit: 1m\frac{1}{m}

Therefore, the original limit is:

1n1m=mn\frac{\frac{1}{n}}{\frac{1}{m}} = \frac{m}{n}

Both methods confirm the result.