Question
Question: $\lim_{x\to 1}\frac{\sqrt[n]{x}-1}{\sqrt[m]{x}-1}$(m and n integers) is equal to:...
limx→1mx−1nx−1(m and n integers) is equal to:

A
0
B
1
C
nm
D
mn
Answer
nm
Explanation
Solution
The problem requires evaluating the limit:
x→1limmx−1nx−1where m and n are integers.
Substituting x=1 yields the indeterminate form 00, allowing us to use L'Hopital's Rule.
Applying L'Hopital's Rule:
Let f(x)=x1/n−1 and g(x)=x1/m−1. Then:
f′(x)=n1xn1−1
g′(x)=m1xm1−1
Thus,
x→1limg′(x)f′(x)=x→1limm1xm1−1n1xn1−1=x→1limnmxn1−m1Substituting x=1:
nm(1)n1−m1=nmAlternative Method: Using Standard Limit Formula
Rewrite the limit by dividing both numerator and denominator by (x−1):
x→1limx−1x1/m−1x−1x1/n−1Using the standard limit formula limx→ax−axp−ap=pap−1:
Numerator limit: n1
Denominator limit: m1
Therefore, the original limit is:
m1n1=nmBoth methods confirm the result.