Solveeit Logo

Question

Question: $\lim_{x\to 0}\frac{sinln \frac{2024}{2024-x}}{tan(\frac{2024}{2024-3x}-1)}$...

limx0sinln20242024xtan(202420243x1)\lim_{x\to 0}\frac{sinln \frac{2024}{2024-x}}{tan(\frac{2024}{2024-3x}-1)}

Answer

1/3

Explanation

Solution

The given limit is of the indeterminate form 00\frac{0}{0}. We can use standard limits or L'Hopital's rule.

We use the standard limits: limu0sinuu=1\lim_{u\to 0} \frac{\sin u}{u} = 1, limu0tanuu=1\lim_{u\to 0} \frac{\tan u}{u} = 1, and limu0ln(1+u)u=1\lim_{u\to 0} \frac{\ln(1+u)}{u} = 1.

Let's analyze the numerator: sin(ln20242024x)\sin\left(\ln \frac{2024}{2024-x}\right).

ln20242024x=ln(2024x+x2024x)=ln(1+x2024x)\ln \frac{2024}{2024-x} = \ln \left(\frac{2024-x+x}{2024-x}\right) = \ln \left(1 + \frac{x}{2024-x}\right).

As x0x \to 0, x2024x0\frac{x}{2024-x} \to 0.

Let u(x)=ln(1+x2024x)u(x) = \ln \left(1 + \frac{x}{2024-x}\right). As x0x \to 0, u(x)0u(x) \to 0.

The numerator is sin(u(x))\sin(u(x)). We can write this as sin(u(x))u(x)u(x)\frac{\sin(u(x))}{u(x)} \cdot u(x).

limx0sin(u(x))u(x)=1\lim_{x\to 0} \frac{\sin(u(x))}{u(x)} = 1.

Now consider u(x)=ln(1+x2024x)u(x) = \ln \left(1 + \frac{x}{2024-x}\right). Let v(x)=x2024xv(x) = \frac{x}{2024-x}. As x0x \to 0, v(x)0v(x) \to 0.

u(x)=ln(1+v(x))u(x) = \ln(1+v(x)). We can write this as ln(1+v(x))v(x)v(x)\frac{\ln(1+v(x))}{v(x)} \cdot v(x).

limx0ln(1+v(x))v(x)=1\lim_{x\to 0} \frac{\ln(1+v(x))}{v(x)} = 1.

So, the numerator is asymptotically equivalent to v(x)=x2024xv(x) = \frac{x}{2024-x} as x0x \to 0.

limx0sin(ln20242024x)x=limx0sin(u(x))u(x)ln(1+v(x))v(x)v(x)x=11limx0x2024xx=limx012024x=12024\lim_{x\to 0} \frac{\sin\left(\ln \frac{2024}{2024-x}\right)}{x} = \lim_{x\to 0} \frac{\sin(u(x))}{u(x)} \cdot \frac{\ln(1+v(x))}{v(x)} \cdot \frac{v(x)}{x} = 1 \cdot 1 \cdot \lim_{x\to 0} \frac{\frac{x}{2024-x}}{x} = \lim_{x\to 0} \frac{1}{2024-x} = \frac{1}{2024}.

Let's analyze the denominator: tan(202420243x1)\tan\left(\frac{2024}{2024-3x}-1\right).

202420243x1=2024(20243x)20243x=3x20243x\frac{2024}{2024-3x}-1 = \frac{2024 - (2024-3x)}{2024-3x} = \frac{3x}{2024-3x}.

As x0x \to 0, 3x20243x0\frac{3x}{2024-3x} \to 0.

Let w(x)=3x20243xw(x) = \frac{3x}{2024-3x}. As x0x \to 0, w(x)0w(x) \to 0.

The denominator is tan(w(x))\tan(w(x)). We can write this as tan(w(x))w(x)w(x)\frac{\tan(w(x))}{w(x)} \cdot w(x).

limx0tan(w(x))w(x)=1\lim_{x\to 0} \frac{\tan(w(x))}{w(x)} = 1.

So, the denominator is asymptotically equivalent to w(x)=3x20243xw(x) = \frac{3x}{2024-3x} as x0x \to 0.

limx0tan(202420243x1)x=limx0tan(w(x))w(x)w(x)x=1limx03x20243xx=limx0320243x=32024\lim_{x\to 0} \frac{\tan\left(\frac{2024}{2024-3x}-1\right)}{x} = \lim_{x\to 0} \frac{\tan(w(x))}{w(x)} \cdot \frac{w(x)}{x} = 1 \cdot \lim_{x\to 0} \frac{\frac{3x}{2024-3x}}{x} = \lim_{x\to 0} \frac{3}{2024-3x} = \frac{3}{2024}.

Now, we can evaluate the limit of the ratio:

limx0sin(ln20242024x)tan(202420243x1)=limx0sin(ln20242024x)xtan(202420243x1)x\lim_{x\to 0}\frac{\sin\left(\ln \frac{2024}{2024-x}\right)}{\tan\left(\frac{2024}{2024-3x}-1\right)} = \lim_{x\to 0}\frac{\frac{\sin\left(\ln \frac{2024}{2024-x}\right)}{x}}{\frac{\tan\left(\frac{2024}{2024-3x}-1\right)}{x}}.

Using the limits we found for the numerator and denominator divided by xx:

=limx0sin(ln20242024x)xlimx0tan(202420243x1)x=1/20243/2024=13= \frac{\lim_{x\to 0}\frac{\sin\left(\ln \frac{2024}{2024-x}\right)}{x}}{\lim_{x\to 0}\frac{\tan\left(\frac{2024}{2024-3x}-1\right)}{x}} = \frac{1/2024}{3/2024} = \frac{1}{3}.