Solveeit Logo

Question

Question: $\lim_{x\to 0} \frac{sin(\pi cos^2x)}{x^2}$...

limx0sin(πcos2x)x2\lim_{x\to 0} \frac{sin(\pi cos^2x)}{x^2}

Answer

π\pi

Explanation

Solution

The limit is of the form 00\frac{0}{0}.

Use the identity cos2x=1sin2x\cos^2 x = 1 - \sin^2 x in the argument of sine: πcos2x=π(1sin2x)=ππsin2x\pi \cos^2 x = \pi(1 - \sin^2 x) = \pi - \pi \sin^2 x.

Use the identity sin(πθ)=sinθ\sin(\pi - \theta) = \sin \theta to get sin(πcos2x)=sin(ππsin2x)=sin(πsin2x)\sin(\pi \cos^2 x) = \sin(\pi - \pi \sin^2 x) = \sin(\pi \sin^2 x).

The limit becomes limx0sin(πsin2x)x2\lim_{x\to 0} \frac{\sin(\pi \sin^2 x)}{x^2}.

Rewrite the expression as sin(πsin2x)πsin2xπsin2xx2\frac{\sin(\pi \sin^2 x)}{\pi \sin^2 x} \cdot \frac{\pi \sin^2 x}{x^2}.

Take the limit of each part separately.

limx0sin(πsin2x)πsin2x=1\lim_{x\to 0} \frac{\sin(\pi \sin^2 x)}{\pi \sin^2 x} = 1 using the standard limit limy0sinyy=1\lim_{y\to 0} \frac{\sin y}{y} = 1 with y=πsin2xy = \pi \sin^2 x.

limx0πsin2xx2=πlimx0(sinxx)2=π(1)2=π\lim_{x\to 0} \frac{\pi \sin^2 x}{x^2} = \pi \lim_{x\to 0} \left(\frac{\sin x}{x}\right)^2 = \pi (1)^2 = \pi using the standard limit limx0sinxx=1\lim_{x\to 0} \frac{\sin x}{x} = 1.

The overall limit is the product of the two limits: 1π=π1 \cdot \pi = \pi.