Solveeit Logo

Question

Question: $\lim_{x\to 0} \frac{e^{\frac{1}{x}}-1}{e^{\frac{1}{x}}+1}$...

limx0e1x1e1x+1\lim_{x\to 0} \frac{e^{\frac{1}{x}}-1}{e^{\frac{1}{x}}+1}

Answer

Does not exist

Explanation

Solution

To evaluate the limit limx0e1x1e1x+1\lim_{x\to 0} \frac{e^{\frac{1}{x}}-1}{e^{\frac{1}{x}}+1}, we need to consider the left-hand limit (LHL) and the right-hand limit (RHL) separately, as the behavior of 1x\frac{1}{x} changes significantly as xx approaches 00 from the positive and negative sides.

1. Right-Hand Limit (RHL):

As x0+x \to 0^+, we have 1x+\frac{1}{x} \to +\infty.
Therefore, e1x+e^{\frac{1}{x}} \to +\infty.
The limit becomes: limx0+e1x1e1x+1\lim_{x\to 0^+} \frac{e^{\frac{1}{x}}-1}{e^{\frac{1}{x}}+1} To evaluate this, divide the numerator and denominator by e1xe^{\frac{1}{x}}: limx0+e1xe1x1e1xe1xe1x+1e1x=limx0+1e1x1+e1x\lim_{x\to 0^+} \frac{\frac{e^{\frac{1}{x}}}{e^{\frac{1}{x}}}-\frac{1}{e^{\frac{1}{x}}}}{\frac{e^{\frac{1}{x}}}{e^{\frac{1}{x}}}+\frac{1}{e^{\frac{1}{x}}}} = \lim_{x\to 0^+} \frac{1-e^{-\frac{1}{x}}}{1+e^{-\frac{1}{x}}} As x0+x \to 0^+, 1x+\frac{1}{x} \to +\infty, so 1x-\frac{1}{x} \to -\infty.
Thus, e1x0e^{-\frac{1}{x}} \to 0.
Substituting this value: 101+0=1\frac{1-0}{1+0} = 1 So, the RHL is 11.

2. Left-Hand Limit (LHL):

As x0x \to 0^-, we have 1x\frac{1}{x} \to -\infty.
Therefore, e1x0e^{\frac{1}{x}} \to 0.
The limit becomes: limx0e1x1e1x+1\lim_{x\to 0^-} \frac{e^{\frac{1}{x}}-1}{e^{\frac{1}{x}}+1} Substitute e1x=0e^{\frac{1}{x}} = 0 into the expression: 010+1=11=1\frac{0-1}{0+1} = \frac{-1}{1} = -1 So, the LHL is 1-1.

Since the left-hand limit (1-1) is not equal to the right-hand limit (11), the limit of the function as x0x \to 0 does not exist.