Question
Question: $\lim_{x\to 0} \frac{(1+\sin x)^{\frac{1}{2014}}+(1-\tan x)^{\frac{1}{2014}}-2}{x^{3}}$...
limx→0x3(1+sinx)20141+(1−tanx)20141−2

Does not exist
Solution
To evaluate the limit limx→0x3(1+sinx)20141+(1−tanx)20141−2, we will use the Taylor series expansions for sinx, tanx, and the generalized binomial theorem.
Let n=20141. The generalized binomial expansion for (1+u)n around u=0 is: (1+u)n=1+nu+2!n(n−1)u2+3!n(n−1)(n−2)u3+O(u4).
We need the Taylor series expansions for sinx and tanx around x=0 up to the x3 term: sinx=x−6x3+O(x5) tanx=x+3x3+O(x5)
1. Expand (1+sinx)n: Let u=sinx. u=x−6x3+O(x5) u2=(sinx)2=(x−6x3+O(x5))2=x2−3x4+O(x6) u3=(sinx)3=(x−6x3+O(x5))3=x3+O(x5)
Substitute these into the binomial expansion for (1+sinx)n: (1+sinx)n=1+n(x−6x3)+2n(n−1)(x2−3x4)+6n(n−1)(n−2)(x3)+O(x4) Collecting terms by powers of x: (1+sinx)n=1+nx+2n(n−1)x2+(6n(n−1)(n−2)−6n)x3+O(x4) (1+sinx)n=1+nx+2n(n−1)x2+6n(n2−3n+1)x3+O(x4) (Equation 1)
2. Expand (1−tanx)n: Let v=−tanx. v=−(x+3x3+O(x5))=−x−3x3+O(x5) v2=(−tanx)2=(−x−3x3+O(x5))2=x2+32x4+O(x6) v3=(−tanx)3=(−x−3x3+O(x5))3=−x3+O(x5)
Substitute these into the binomial expansion for (1−tanx)n: (1−tanx)n=1+n(−x−3x3)+2n(n−1)(x2+32x4)+6n(n−1)(n−2)(−x3)+O(x4) Collecting terms by powers of x: (1−tanx)n=1−nx+2n(n−1)x2+(−6n(n−1)(n−2)−3n)x3+O(x4) (1−tanx)n=1−nx+2n(n−1)x2−6n(n2−3n+4)x3+O(x4) (Equation 2)
3. Combine the expansions for the numerator: Let N(x)=(1+sinx)n+(1−tanx)n−2. Add Equation 1 and Equation 2, then subtract 2: N(x)=(1+nx+2n(n−1)x2+6n(n2−3n+1)x3)+(1−nx+2n(n−1)x2−6n(n2−3n+4)x3)−2+O(x4)
Combine like terms: Constant terms: 1+1−2=0 x terms: nx−nx=0 x2 terms: 2n(n−1)x2+2n(n−1)x2=n(n−1)x2 x3 terms: (6n(n2−3n+1)−6n(n2−3n+4))x3=6n(n2−3n+1−(n2−3n+4))x3=6n(−3)x3=−2nx3
So, the numerator is N(x)=n(n−1)x2−2nx3+O(x4).
4. Evaluate the limit: The limit expression becomes: L=limx→0x3n(n−1)x2−2nx3+O(x4) Divide each term in the numerator by x3: L=limx→0(xn(n−1)−2n+O(x))
Given n=20141. Therefore, n(n−1)=20141(20141−1)=20141(−20142013)=−201422013. This value is a non-zero constant.
As x→0, the term xn(n−1) approaches ±∞. Specifically: As x→0+, xn(n−1)=x−201422013→−∞. As x→0−, xn(n−1)=x−201422013→+∞.
Since the left-hand limit and the right-hand limit are not equal, the limit does not exist.
The final answer is Does not exist.
Explanation of the solution: The numerator is expanded using Taylor series for (1+sinx)n and (1−tanx)n up to x3 terms. (1+sinx)n=1+nx+2n(n−1)x2+6n(n2−3n+1)x3+O(x4) (1−tanx)n=1−nx+2n(n−1)x2−6n(n2−3n+4)x3+O(x4) Adding these and subtracting 2, the numerator becomes n(n−1)x2−2nx3+O(x4). The limit is limx→0x3n(n−1)x2−2nx3+O(x4)=limx→0(xn(n−1)−2n+O(x)). Since n=20141, n(n−1)=0. The term xn(n−1) approaches ±∞ as x→0, causing the limit to not exist.