Solveeit Logo

Question

Question: $\lim_{x \to \infty} (\sqrt{x^2-x+1} - ax + 2b) = 0$, then a = ------....

limx(x2x+1ax+2b)=0\lim_{x \to \infty} (\sqrt{x^2-x+1} - ax + 2b) = 0, then a = ------.

A

a = 0

B

a = ±2

C

a = -1

D

a = 1

Answer

a = 1

Explanation

Solution

We have

limx(x2x+1ax+2b)=0.\lim_{x\to\infty}\left(\sqrt{x^2-x+1}-ax+2b\right)=0.

For large xx, write

x2x+1=x11x+1x2.\sqrt{x^2-x+1}=x\sqrt{1-\frac{1}{x}+\frac{1}{x^2}}.

Using the expansion 1+u1+u2\sqrt{1+u}\approx1+\frac{u}{2} for small uu (where u=1x+1x2u=-\frac{1}{x}+\frac{1}{x^2}), we get:

11x+1x2112x(ignoring higher order terms),\sqrt{1-\frac{1}{x}+\frac{1}{x^2}}\approx 1-\frac{1}{2x}\quad (\text{ignoring higher order terms}),

so that

x2x+1x12.\sqrt{x^2-x+1}\approx x-\frac{1}{2}.

Therefore,

x2x+1ax+2b(1a)x12+2b.\sqrt{x^2-x+1}-ax+2b \approx (1-a)x-\frac{1}{2}+2b.

For the limit to be 0 as xx\to \infty, the coefficient of xx must vanish:

1a=0    a=1.1-a=0 \quad\implies\quad a=1.

In summary: Expand x2x+1\sqrt{x^2-x+1} for large xx to get x12x-\frac{1}{2}. Equate the coefficient of xx to zero in (x12)ax+2b(x-\frac{1}{2})-ax+2b to obtain 1a=01-a=0 so a=1a=1.