Question
Question: $\lim_{x \to \infty} \sqrt{x} \left( \sqrt{x + \sqrt{x + \sqrt{x + \sqrt{x}}}} - \sqrt{x + \sqrt{x}}...
limx→∞x(x+x+x+x−x+x) is equal to

0
41
21
none of these
1/4
Solution
Let the given limit be L.
L=limx→∞x(x+x+x+x−x+x)
This is an indeterminate form of type ∞×(∞−∞). We will use the rationalization technique.
Let A=x+x+x+x and B=x+x.
The expression inside the parenthesis is A−B. We multiply and divide by (A+B):
L=limx→∞xA+B(A−B)(A+B)=limx→∞xA+BA2−B2
Calculate A2−B2:
A2=x+x+x+x
B2=x+x
A2−B2=(x+x+x+x)−(x+x)
A2−B2=x+x+x−x
Substitute this back into the limit expression:
L=limx→∞xx+x+x+x+x+xx+x+x−x
The numerator is still an indeterminate form (∞−∞). Let C=x+x+x and D=x.
We rationalize the numerator by multiplying and dividing by (C+D):
C−D=C+D(C−D)(C+D)=C+DC2−D2
C2=x+x+x
D2=x
C2−D2=(x+x+x)−x=x+x
Now substitute this back into the expression for L:
L=limx→∞x(x+x+x+x+x+x)(x+x+x+x)x+x
Now, we extract x from each term in the denominator and the numerator.
Numerator: xx+x=xx(1+1/x)=x⋅x1+1/x=x1+1/x
Denominator terms:
- x+x+x+x=x(1+x11+x11+x1)=x1+x11+x11+x1
- x+x=x(1+x1)=x1+x1
- x+x+x=x(1+x11+x1)=x1+x11+x1
- x=x
Substitute these into the expression for L:
L=limx→∞(x1+x11+x11+x1+x1+x1)(x1+x11+x1+x)x1+1/x
Factor out x from each parenthesis in the denominator:
L=limx→∞x(1+x11+x11+x1+1+x1)(1+x11+x1+1)x1+1/x
Cancel out x from numerator and denominator:
L=limx→∞(1+x11+x11+x1+1+x1)(1+x11+x1+1)1+1/x
As x→∞, terms like 1/x tend to 0.
Let's evaluate each part:
Numerator: 1+0=1
First parenthesis in denominator:
1+0⋅1+0⋅1+0+1+0=1+1=1+1=2
Second parenthesis in denominator:
1+0⋅1+0+1=1+1=1+1=2
So, the limit becomes:
L=(2)(2)1=41
The final answer is 41.