Solveeit Logo

Question

Question: $\lim_{x \to \infty} \frac{lnx}{x}$...

limxlnxx\lim_{x \to \infty} \frac{lnx}{x}

Answer

0

Explanation

Solution

The limit is of the form \frac{\infty}{\infty}. Apply L'Hôpital's Rule. Differentiate the numerator (lnx\ln x) to get 1/x1/x. Differentiate the denominator (xx) to get 1. The new limit is limx1/x1=limx1x=0\lim_{x \to \infty} \frac{1/x}{1} = \lim_{x \to \infty} \frac{1}{x} = 0.